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Thus far
• First Lecture: Chemical kinetics

• Direction of  reaction: ∆G, Γ/Keq

• How far: Keq, ∆G0

• How fast: mass action kinetics
• Second Lecture: Enzyme kinetics
• Derivation of  rate equations: equilibrium binding, steady-state 

approximation

• Vmax, Km, saturation, cooperativity, allostery, reversibility, product 
inhibition

• Third Lecture: Coupled reactions
• Parameter estimation; initial rates, progress curves
• Closed, open systems; equilibrium, steady state, rate characteristics
• Kinetic model of  simple pathways in steady state
• Fourth Lecture: Structural network analysis
• N, K, L matrices
• Steady-state flux constraints, flux analysis, flux modes
• Moiety conservation relationships



This lecture:
Metabolic Control Analysis 

(MCA)

• Quantifies the importance of  each of  the 
enzymes in determining the steady-state 
system variables in terms of  control 
coefficients

• Relates this importance for system 
behaviour to characteristics of  the isolated 
components (elasticities)



Metabolic control analysis:
Relationship between
Response, control and
elasticity coefficients



The steady state of an open system

Parameters - The controllers

I Fixed concentrations (external)
I Thermodynamic constants (equilibrium constants)
I Kinetic constants (kcat, KM, enzyme concentrations)
I Moiety-conserved sums of concentrations

Variables - The controlled

I Fluxes, J (i.e., reaction rates in steady state)
I Concentrations of network intermediates
I Functions of fluxes and concentrations (ratios, potentials,

etc.)



Control coefficients
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Control coefficient—Mathematical definition

For any steady-state variable y the control
coefficient of reaction i is given by

Cy
vi =

∂ ln y
∂ ln vi



Rate characteristics linearised in log-log space
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Control coefficients and the
summation properties



The steady-state concentration x has changed by d ln x
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The steady-state concentration x has changed by d ln x
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Summation property
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The system
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Thought experiment: Summation properties

X3

S2

S1

X0

a

a

a

3

2

1
What would happen if all the reaction rates are
changed simultaneously by the factor a?

dv1

v1
=

dv2

v2
=

dv3

v3
= a

or, in terms of logarithmic changes,

d ln v1 = d ln v2 = d ln v3 = a



Flux summation properties
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The effect on the flux, J, is the sum of all the
individual rate changes:

d ln J = CJ
v1 d ln v1 + CJ

v2 d ln v2 + CJ
v3 d ln v3

But, the flux also increases by factor a, and
since

d ln v1 = d ln v2 = d ln v3 = a

this simplifies to a = a(CJ
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v3)
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Concentration summation properties
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The concentrations s1 and s2 remain
unchanged.

Therefore, for s1:
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General summation theorems

For any steady-state flux, Jm

n
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For any steady-state concentration sj
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C
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where n = number of enzymes in the system.



Elasticity coefficients
and the

connectivity properties



Elasticity coefficient—Operational definition

What is the change in reaction rate vi when a metabolite Sj that
directly influences the reaction (substrate or product or
effector) changes, while all other metabolites remain constant?
For a small fractional change in sj:

d ln vi = #vi
sj
· d ln sj

Operational meaning:
If sj changes by 1%, the rate vi changes by #vi

s %.

or

#vi
s is the % change in vi when sj changes by 1%.



Elasticity coefficient—Mathematical definition
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Elasticity coefficients of an enzyme-catalysed reaction
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Elasticity coefficient of v2 with respect to x
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Quantitative analysis of metabolic functions

The relative values of the slopes of the tangents
of the rate characteristics at steady state (the
elasticity coefficients, #) determine metabolic
functions:

1. the distribution of flux control
2. the magnitude of concentration control

(degree of homeostasis)



Connectivity property
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Connectivity property

for the concentration x
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Putting it all together:
Control

in terms of
elasticities



Summary of control properties
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Control matrix equation
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Control analytic expressions
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The response coefficients of E2
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General definition of a response coefficient

For any steady-state variable y and any parameter p
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This can be re-cast in terms of fractional changes
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=
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A response coefficient is therefore also a ratio of percentage

changes.
It can be defined operationally as the %-change in y caused by a
1%-change in parameter p.



The partitioned response
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Consider a perturbation in a parameter that only affects v2, e.g.
the enzyme concentration e2.

The effect on a steady-state variable such as J must be
propagated through a local change in v2.
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The generalised partitioned response

A partitioned response equation exists for any parameter p and
any steady-state variable y (flux or concentration).

The effect of a change dp on the variable y can be partitioned
into a local rate effect, dv

i

, (quantified by the elasticity
coefficient, #v
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This is not normally true if the parameter is
something different from an enzyme
concentration (e.g. KM).



Control vs. response coefficients

A control coefficient is the property of a step (i.e.
parameter-independent).

A response coefficient is the property of a parameter.
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Thought experiment: Partitioned response
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Consider a small change in the concentration
of a parameter, say de2. The immediate
localised effect is to change the rate v2 by the
amount

d ln v2 = #v2
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· d ln e2

The change in v2 is then propagated through
the system to cause a change in the steady
state. For example, for the flux J:
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Thought experiment: R = C#
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Linking the local effect to the subsequent
systemic effect gives:
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