Biochemistry 714 Mini-course: Molecular Systems Biology

Prof Johann Rohwer (lectures), Dr Dawie van Niekerk (tutorials and data analysis), Prof Jacky Snoep (tutorials and practical)

March – April 2025

Thus far

- First Lecture: Chemical kinetics
- Direction of reaction: ΔG , Γ/K_{eq}
- How far: K_{eq} , ΔG^0
- How fast: mass action kinetics
- Second Lecture: Enzyme kinetics
- Derivation of rate equations: equilibrium binding, steadystate approximation
- V_{max} , K_m , saturation, cooperativity, allostery, reversibility, product inhibition
- Third Lecture: Coupled reactions
- Parameter estimation; initial rates, progress curves
- Closed, open systems; equilibrium, steady state, rate characteristics
- Kinetic model of simple pathways in steady state

This lecture: Network analysis

- For a given system, derive N, K, L matrices, interpret them
- Flux modes

Kinetic model of a coupled reaction network

$$\frac{d\mathbf{s}}{dt} = \mathbf{N}\mathbf{v}[\mathbf{s}, \mathbf{p}]$$

ere, for a system of *n* coupled re

where, for a system of *n* coupled reactions that interconvert *m* metabolites:

- **s** = *m*-dim vector of metabolite concentrations
- $N = m \times n$ matrix of stoichiometric coefficients
- **v** = *n*-dim vector of reaction rates
- **p** = *p*-dim vector of parameters

Analysis of the stoichiometric matrix, N

Stoichiometry matrix, N

$$ds_{1}/dt = v_{1} - v_{3} - v_{4}$$

$$ds_{2}/dt = v_{2} - v_{1}$$

$$ds_{3}/dt = v_{1} - v_{2}$$

$$\frac{d\mathbf{s}}{dt} = \begin{bmatrix} 1 & 0 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}$$
$$\frac{d\mathbf{s}}{dt} = \mathbf{N}\mathbf{v}[\mathbf{s}, \mathbf{p}]$$

The nullspace of **N** and flux-relationships

In steady state $\frac{ds}{dt} = Nv = 0$ and rates, v, are now called fluxes, J. If J_3 and J_4 (the R_3 and R_4 -columns without pivots) are chosen as the independent fluxes, J_i :

$$\begin{bmatrix} J_3 \\ J_4 \\ J_1 \\ J_2 \end{bmatrix} = \begin{bmatrix} J_3 \\ J_4 \\ J_3 + J_4 \\ J_3 + J_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} J_3 + \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} J_4 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} J_3 \\ J_4 \end{bmatrix}$$

or

$$\mathbf{J} = \mathbf{K} \mathbf{J}_{\mathbf{i}} \quad \text{or} \quad \begin{bmatrix} \mathbf{J}_{\mathbf{i}} \\ \mathbf{J}_{\mathbf{d}} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{r} \\ \mathbf{K}_{0} \end{bmatrix} \mathbf{J}_{\mathbf{i}}$$

where **K** is the nullspace or kernel of **N**.

The link-matrix, L, and ODE relationships

Either S_2 or S_3 can be chosen as the dependent metabolite, S_i . Choose S_3 .

$$\begin{bmatrix} \dot{s}_1 \\ \dot{s}_2 \\ \dot{s}_3 \end{bmatrix} = \begin{bmatrix} \dot{s}_1 \\ \dot{s}_2 \\ -\dot{s}_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \dot{s}_1 + \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \dot{s}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \dot{s}_1 \\ \dot{s}_2 \end{bmatrix}$$
or

$$\frac{d\mathbf{s}}{dt} = \mathbf{L}\frac{d\mathbf{s}_{\mathbf{i}}}{dt} \quad \text{or} \quad \frac{d}{dt} \begin{bmatrix} \mathbf{s}_{\mathbf{i}} \\ \mathbf{s}_{\mathbf{d}} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_r \\ \mathbf{L}_0 \end{bmatrix} \frac{d\mathbf{s}_{\mathbf{i}}}{dt}$$

where **L** is the link-matrix

The reduced stoichiometry matrix

$$\mathbf{N} = \begin{bmatrix} 1 & 0 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix}$$

From the stoichiometry matrix N, delete the rows that correspond to dependent metabolites (here S_3):

$$\mathbf{N}_{\mathbf{R}} = \begin{bmatrix} 1 & 0 & -1 & -1 \\ -1 & 1 & 0 & 0 \end{bmatrix}$$

The reduced stoichiometry matrix

$N = LN_R$

$$\mathbf{N} = \begin{bmatrix} 1 & 0 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 & -1 \\ -1 & 1 & 0 & 0 \end{bmatrix}$$

Kinetic model of a coupled reaction network

$$\frac{d\mathbf{s}}{dt} = \mathbf{N}\mathbf{v}[\mathbf{s}, \mathbf{p}]$$

For independent metabolites

$$\frac{d\mathbf{s}_{\mathbf{i}}}{dt} = \mathbf{N}_{\mathbf{R}}\mathbf{v}[\mathbf{s},\mathbf{p}]$$

:

Combine

$$\frac{d\mathbf{s}}{dt} = \mathbf{L}\frac{d\mathbf{s}_{\mathbf{i}}}{dt} = \mathbf{L}\mathbf{N}_{\mathbf{R}}\mathbf{v}[\mathbf{s},\mathbf{p}]$$

Reaction network

Reaction network: N matrix (stoichiometry)

d(s)/dt

Ν

v

(d(ACAL)/dt)		(0	0	0	0	0	0	0	1.	-1.)		(v1)
d(ACCOA)/dt		0	0	0	0	-1.	0	1.	-1.	0		v2
d(ACP)/dt		0	0	0	0	1.	-1.	0	0	0		v3
d(ADP)/dt		-2.	0	1.	0	0	-1.	0	0	0		v4
d(ATP)/dt	=	2.	0	-1.	0	0	1.	0	0	0	*	v5
d(COA)/dt		0	0	0	0	1.	0	-1.	1.	0		v6
d(NAD)/dt		-2.	1.	0	1.	0	0	0	1.	1.		ν7
d(NADH)/dt		2.	-1.	0	-1.	0	0	0	-1.	-1.		v8
d(PYR)/dt		2.	-1.	0	0	0	0	-1.	0	0)		(v9)

N stoichiometry matrix

reaction rates

Reaction network: L matrix (link)

- vector of metabolite concentrations
- L link matrix
- si vector of independent metabolite concentrations
- T vector of the sum of conserved moiety concentrations

Reaction network: steady-state constraint

Reaction network: K matrix (kernel)

Ji independent flux vector

Reaction network: K matrix; flux modes

	J			к		Ji		
	(J3)		(1.	0.	0.			
	J7		0.	1.	0.			
	J9		0.	0.	1.			
	J1		0.5	-0.5	0.5	(J3)		
	J2	=	1.	-2.	1.	* J7		
	J4		0.	1.	-2.	(ec)		
	J5		0.	1.	-1.			
	J6		0.	1.	-1.			
	(J8)		0.	0.	1.)			
J steady state reaction rate (flux) vector								

- κ kernel, nullspace of stoichiometry matrix
- Ji independent flux vector

- col. I = homolactic fermentation
- $2 \times col.l + col.2 = homo-acetate fermentation$
- $col.3 + 2 \times col.2 + 3 \times col.1 = mixed acid fermentation$