
Biochemistry 714 Mini-course: Molecular Systems Biology

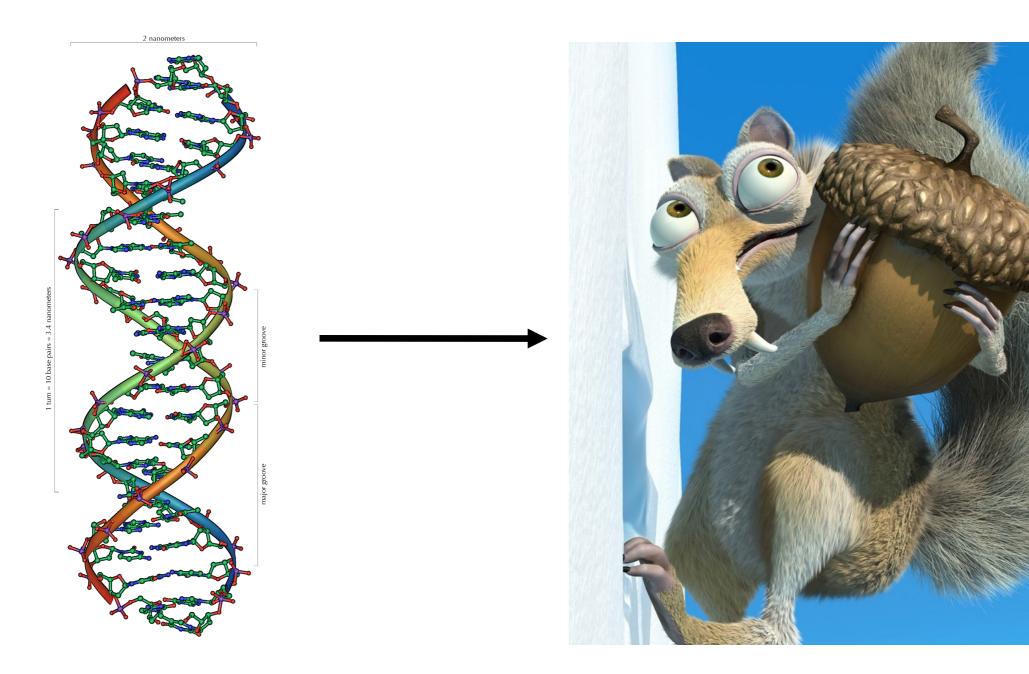
Prof Johann Rohwer (lectures), Dr Dawie van Niekerk (tutorials and data analysis), Prof Jacky Snoep (tutorials and practical)

March – April 2025

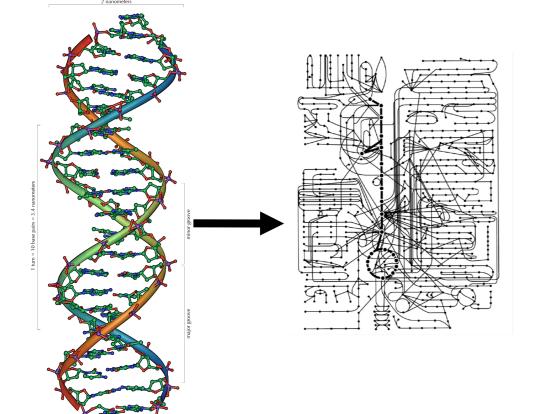
Programme

	Mon	Tue	Wed	Thu	Fri			
17 – 21 Mar	10:00 Welcome & Intro DvN	09:30 Lecture 1 (Mass action kinetics) JR	09:30 Lecture 2 (Enzyme catalysed reactions) JR	12:30 Safety Lecture 2 ES	Human Rights Day			
	14:00 Tut 1 (Intro) DvN	14:00 Tut 2 (Mass action kinetics) DvN & JLS	14:00 Tut 3 (Enzyme catalysed reactions) DvN & JLS	14:00 Lecture 3 (Coupled reactions) JR	Day			
24 – 28 Mar	09:30 Lecture 4 (Networks) JR	11:00 Tut 5 (Kinetic model) DvN	09:30 Lecture 5 (MCA) JR	09:30 Research lecture	09:00 Peer grading of Assessment 1 DvN & JLS			
	14:00 Tut 4 (Networks) DvN & JLS	Graduation	14:00 Tut 6 (MCA) DvN & JLS	14:00 Assessment 1 DvN & JLS	11:30 Research lec- ture 14:00 Introduction to Practical JLS			
31 Mar – 4 April	Recess							
7 – 11 April	09:00 Practical (whole day) JLS	09:00 Practical (whole day) JLS	09:00 Practical / Data analysis (whole day) JLS & DvN	09:30 Research lecture 11:00 Data analysis / Practical (whole day) DvN & JLS	09:30 Data analysis (whole day) DvN			
14 – 18 April	09:30 Data analysis (whole day) DvN	Hand in final re- port (15/04/2025 23:59)						

- Face-to-face lectures will take place in the Biochemistry Seminar Room (A111)
- Face-to-face **computer practicals** and data analysis will take place in the **computer lab** (JC Smuts B215, departmental computers or own laptops)
- Practical enzyme kinetics experiments will take place in the molecular systems biology lab (JC Smuts B203A)


Course material

• Available at:


https://glue.jjj.sun.ac.za/jjj/minicourse/

- Molecular Systems Biology textbook available as pdf
- Lecture notes Biochem 323
- Lecture slides
- Tutorials & Mathematica notebooks

The Ultimate Predictive Model

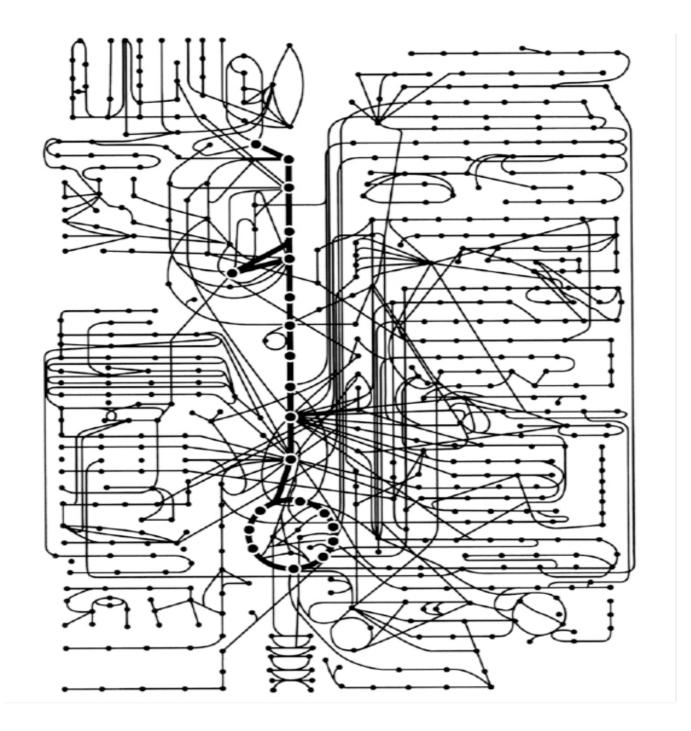
From Sequence to Network

Ś								Ν								v	
(DHAP)																(v1)	
FĠP		(0	0	0	1	1	0	0	0	0	0	0	0	0)		v2	
FBP		0	1	$^{-1}$	0	0	0	0	0	0	0	0	0	0		v3	
		0	0	1	$^{-1}$	0	0	0	0	0	0	0	0	0		v4	
G13DP		0	0	0	0	0	1	$^{-1}$	0	0	0	0	$^{-1}$	0		v5	
GĠP		1	$^{-1}$	0	0	0	0	0	0	0	0	0	0	0		v6	
GÀP	=	0	0	0	1	$^{-1}$	$^{-1}$	0	0	0	0	0	0	0	*	v7	
NÁD		0	0	0	0	0	$^{-1}$	0	0	0	0	1	0	0		v8	
NADH		0	0	0	0	0	1	0	0	0	0	$^{-1}$	0	0		v9	
PŻG		0	0	0	0	0	0	0	1	$^{-1}$	0	0	0	0		v10	
		0	0	0	0	0	0	1	$^{-1}$	0	0	0	0	1		v11	
P3G		0)	0	0	0	0	0	0	0	1	$^{-1}$	0	0	0)		v12	
(PĖP)																(v13)	
š d(s)/d((t)																
N stoich	iomet	try	matr	ix													

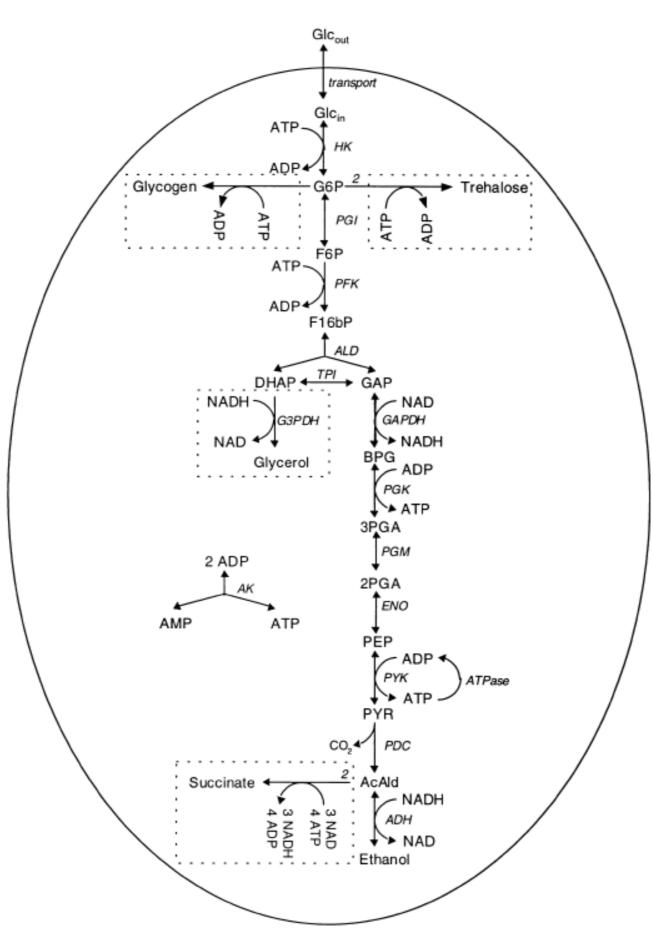
v reaction rates

Reconstruct reaction network using homologies between enzymes Construct stoichiometry matrix from reaction network

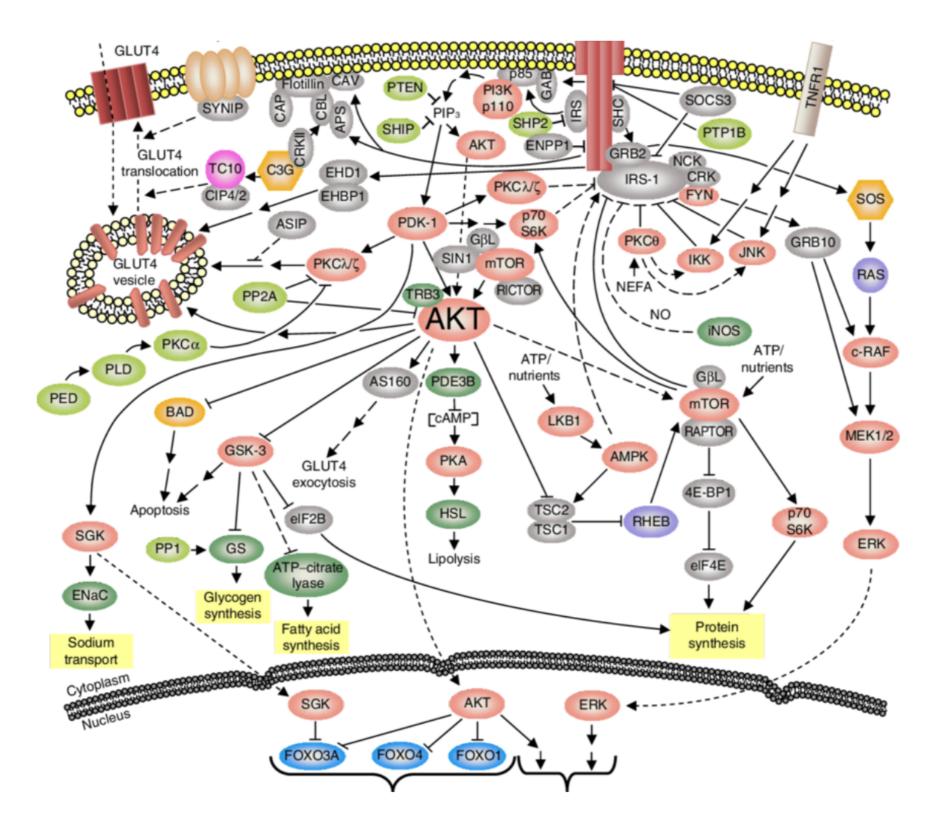
Molecular Systems Biology

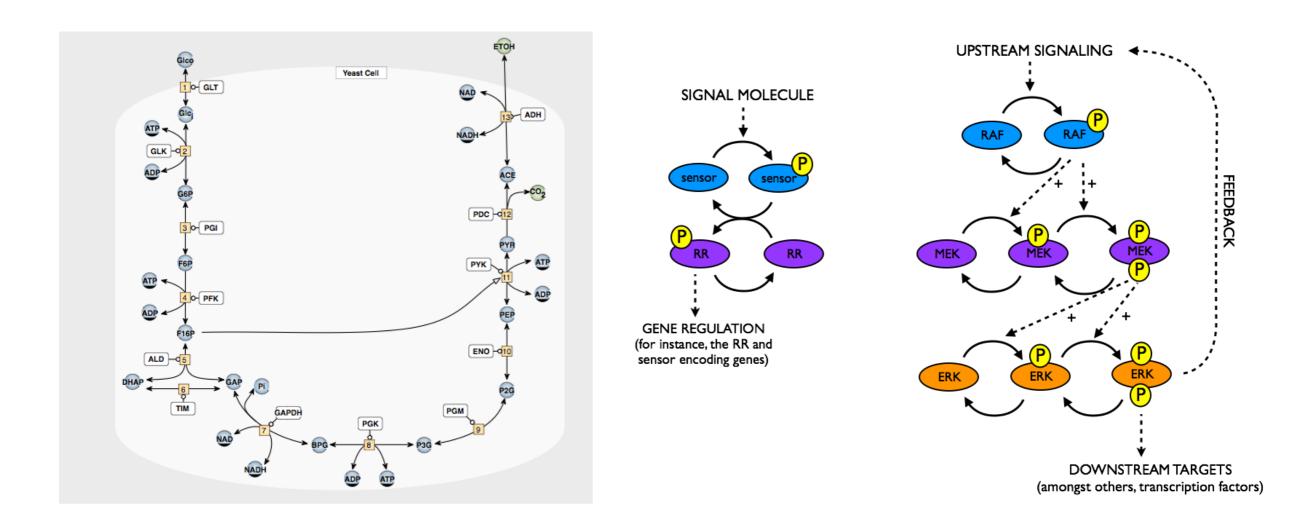

Topology studies show networks but are far removed from functional behaviour.

Classic analyses are qualitative and cannot relate the properties of a system to its components.


Applications in medicine (drug target identification) and biotechnology (metabolic engineering), need specific targets in the system (molecular mechanism).

With a molecular systems biology analysis we aim to understand systems on the basis of the characteristics of their components.


Metabolism

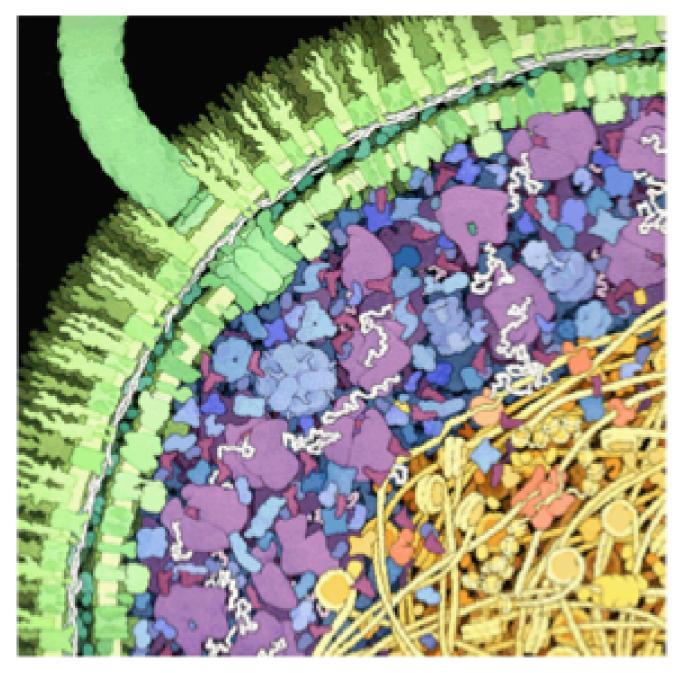

Glycolysis

Signalling

Metabolic and signal transduction networks

Metabolite concentrations, fluxes, time courses Reponse time, doseresponse relation, ligand specificity

Systems Biology


is the science that studies how biological function emerges from the interactions between the components of living systems.

Macromolecules (dead) → Cell (alive) ↓ Function ↓ Functional organisation

Networks and reactivity

- Links in networks indicate reactions, (association, dissociation, isomerization)
- To react (or bind) molecules need to first meet
- metabolites + enzymes or protein + protein

$$A + B \to AB$$
$$v = k \cdot a \cdot b$$

- crowded cellular environment
- molecules undergo random movement (walk)
- rate of diffusion related to rate of association

Diffusion and reactivity

- Diffusion coefficient (D) strongly dependent on size (metabolites fast, proteins slow).
- Diffusion sets an upper limit to reaction rates.
- MSB book: p. 22-23

Kinetics of individual reaction steps

- Individual reaction step is the lowest level of systems description in our approach
- Most reactions in biological systems are catalysed by enzymes
- We start first with non-catalysed, chemical (mass-action) kinetics and then move to enzyme-catalysed reactions

Kinetics of chemical reactions

- Why does a reaction occur?
- What determines the direction of a reaction, i.e. forward or reverse?
- What determines the rate of a reaction?
- When does a reaction rate go to zero?
- How do the molecules know whether they should react or not?
- Net reaction rate, micro-reversibility, statistics

Driving force of a reaction

- A reaction will only occur if the Gibbs freeenergy content of the products is less than that of the substrates, i.e. $\Delta G < 0$
- Gibbs free energy change determines the direction of the reaction
- The rate at which a reaction occurs is dependent on both thermodynamics and kinetics

Three types of elementary reactions

1. an *association* between two molecules to form a non-covalently bound complex,

 $A + B \longrightarrow A \cdot B$

2. a dissociation of a complex into two molecules,

 $A \cdot B \longrightarrow A + B$

3. an interconversion where one molecule is chemically transformed into another (an *isomerisation*).

$$A \longrightarrow B$$

Breaking a reaction up into irreversible elementary reactions:

 $A + B \rightleftharpoons C$

could have the mechanism

 $A + B \rightleftharpoons A \cdot B \rightleftharpoons C$

Each half of the double arrow (\rightleftharpoons) denotes one of the elementary reactions.

The *law of mass action* states that for any elementary reaction, e.g.,

$$\mathbf{A} + \mathbf{B} \longrightarrow \mathbf{A} \cdot \mathbf{B}$$

the reaction rate is proportional to concentration

 $v \propto a$ and $v \propto b$

where

v is the rate of reaction a and h are the concentrations of Λ

a and *b* are the concentrations of A and B.

 $v \propto ab$

Reaction rate, v

$$A + B \longrightarrow A \cdot B$$

$$v = -\frac{da}{dt} = -\frac{db}{dt} = \frac{d(a \cdot b)}{dt}$$

The reaction rate *v* thus has units of concentration \cdot time⁻¹.

The proportionality between rate *v* and concentrations *a* and *b* is transformed into a *rate equation* by inserting a constant, called the *rate constant*:

$$\mathbf{A} + \mathbf{B} \longrightarrow \mathbf{A} \cdot \mathbf{B}$$

$$v = kab$$

Reaction order

- First-order with respect to A
- First-order with respect to B
- Overall order: 2

Determining reaction order

$$A + B \longrightarrow$$

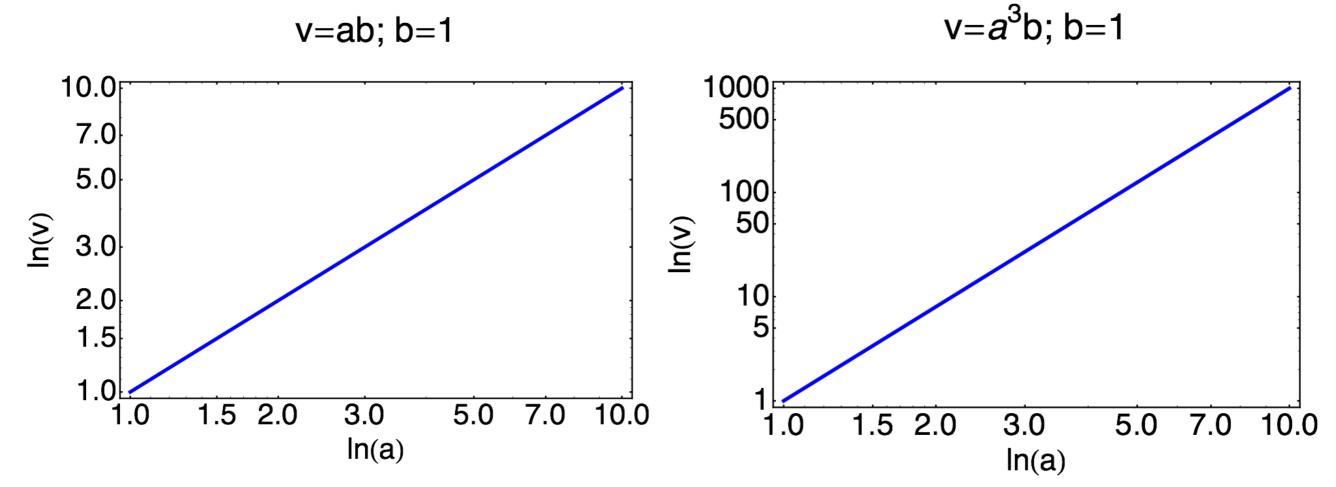
$$v = ka^p b^q$$

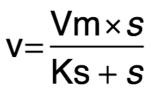
p and *q* are the unknown orders.

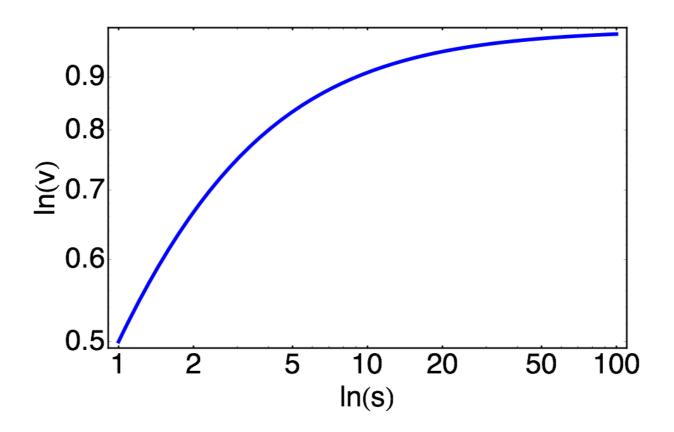
Taking logarithms on both sides we obtain

 $\ln v = \ln k + p \ln a + q \ln b$

Plot ln *v* against either ln *a* or ln *b* to obtain *p* or *q*.


General definition of reaction order


$\frac{d\ln v}{d\ln a}$


evaluated at a given *a*.

More correctly, because *v* is a function of both *a* and *b*,

$$\left(\frac{\partial \ln v}{\partial \ln a}\right)_b$$

Molecularity and reaction order

- Molecularity: the number of molecules that react (stoichiometric coefficients in a balanced reaction equation).
- *Reaction order:* experimentally determined quantity (generally not related to stoichiometric coefficients).

$$A + B \rightleftharpoons C$$

is a combination of the *forward* reaction

 $A + B \rightarrow C$ with rate equation $v_f = k_f a b$

and the *reverse* reaction

 $C \rightarrow A + B$ with rate equation $v_r = k_r c$

The *net rate* of reaction is the difference between the forward and reverse rates

$$v = v_{\rm f} - v_{\rm r} = k_{\rm f}ab - k_{\rm r}c$$

The equilibrium constant

At equilibrium:

$$v = v_{\rm f} - v_{\rm r} = 0$$

Therefore

$$k_{\rm f}(a)_{eq}(b)_{eq} - k_{\rm r}(c)_{eq} = 0$$

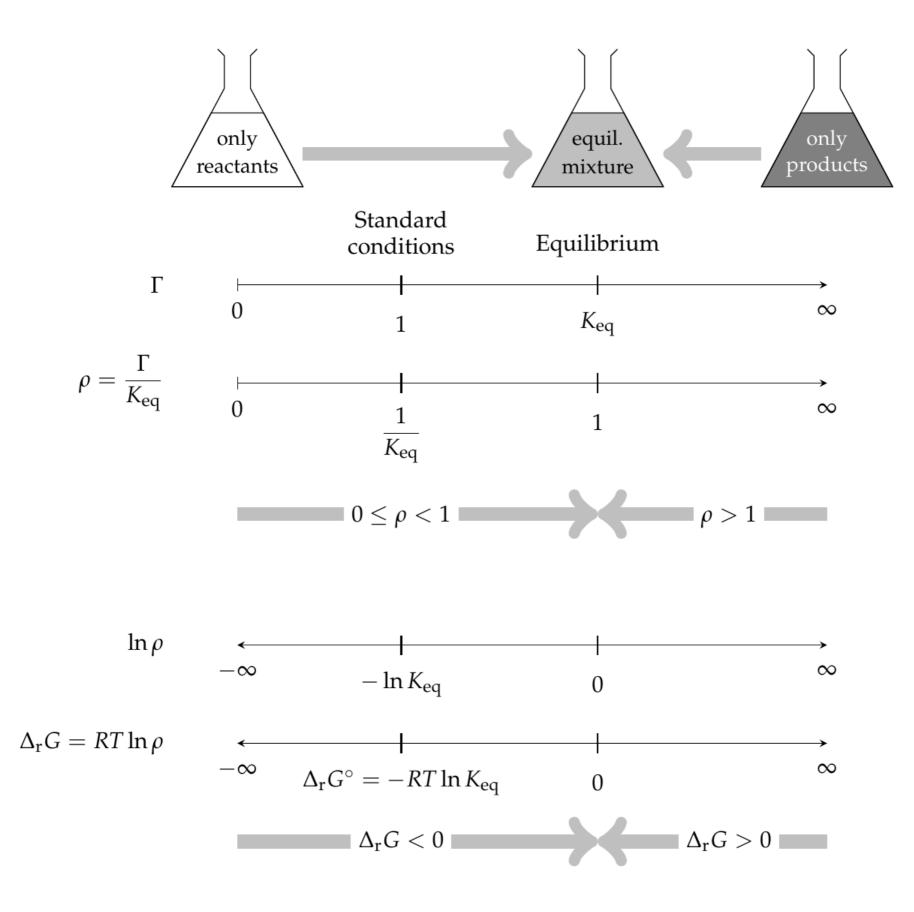
so that

$$\frac{k_{\rm f}}{k_{\rm r}} = \frac{(c)_{eq}}{(a)_{eq}(b)_{eq}} = K_{\rm eq}$$

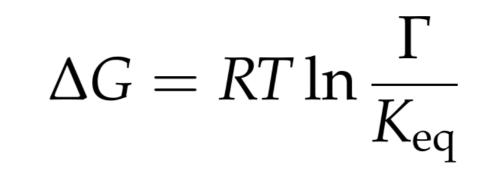
$$mA + nB \rightleftharpoons pC + qD$$

where *m*, *n*, *p*, and *q* are the stoichiometric coefficients. From the rate equations for the forward and reverse reactions

$$v_{\rm f} = k_{\rm f} a^m b^n$$
 and $v_{\rm r} = k_{\rm r} c^p d^q$


and using the equilibrium condition we obtain

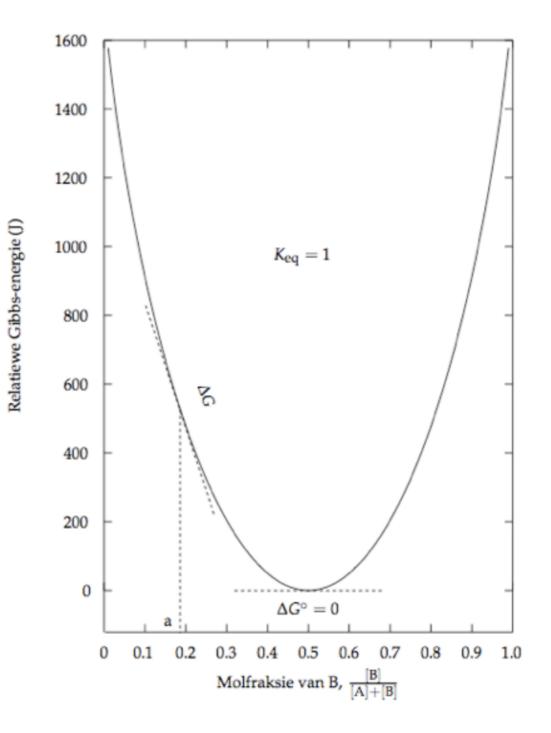
$$K_{\text{eq}} = \frac{(c)_{eq}^{p}(d)_{eq}^{q}}{(a)_{eq}^{m}(b)_{eq}^{n}}$$

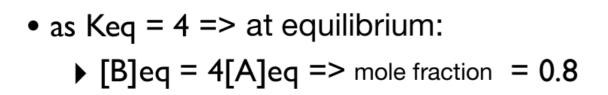

The mass-action ratio and the distance from equilibrium

$$\frac{v_{\rm r}}{v_{\rm f}} = \frac{k_{\rm r}c}{k_{\rm f}ab} = \left(\frac{c}{ab}\right) / K_{\rm eq}$$

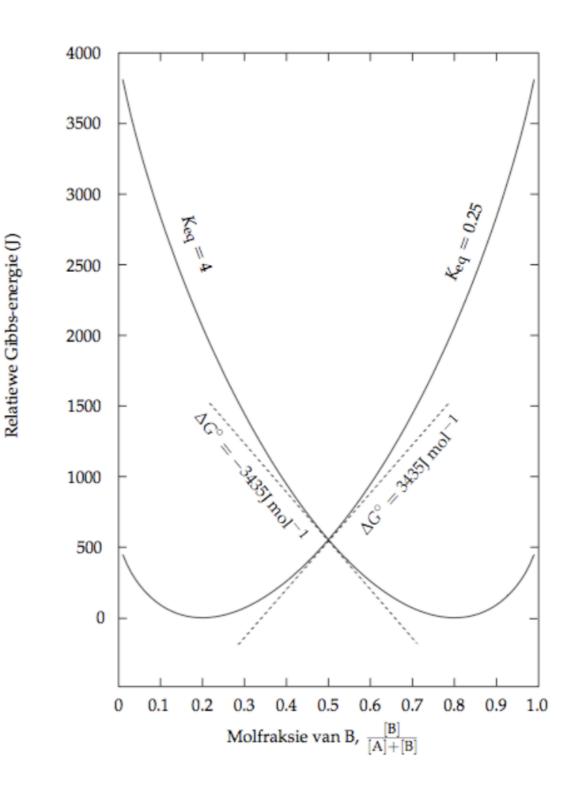
The quantity c/ab is so important that it has been given a special name, the mass-action ratio, usually symbolised by Γ (capital Greek gamma).

The Gibbs energy




$$\Delta G^{\circ} = RT \ln \frac{1}{K_{\text{eq}}} = -RT \ln K_{\text{eq}}$$

$A \rightleftharpoons B$


- gradient increases as reaction moves further away from eq
- equilibrium $\Delta G = 0$
 - ▶ gradient = 0
 - ▶ Keq = I => [A]eq = [B]eq
- at standard conditions Γ=I
 - [A] = [B] => for this example equilibrium is at standard conditions

$$\Rightarrow \Delta G^0 = 0$$

- as Keq = 0.25 => at equilibrium:
 [B]eq = 0.25[A]eq => mole fraction = 0.2
- ΔG^0 = gradient at $\Gamma=1$
- convention G = 0 at equilibrium that

$$A \rightleftharpoons B \rightleftharpoons C$$

Individual equilibrium constants

$$K_{eq1} = rac{(b)_{eq}}{(a)_{eq}}$$
 and $K_{eq2} = rac{(c)_{eq}}{(b)_{eq}}$

For the sequence as a whole

$$K_{eq12} = \frac{(c)_{eq}}{(a)_{eq}}$$

It follows that:

$$K_{eq1}K_{eq2} = \frac{(b)_{eq}}{(a)_{eq}}\frac{(c)_{eq}}{(b)_{eq}} = \frac{(c)_{eq}}{(a)_{eq}} = K_{eq12}$$

Kinetic and energetic components

Consider a possible rate equation for the reaction

 $A + B \rightleftharpoons C + D$

$$v = k_{f}ab - k_{r}cd$$

$$= k_{f}ab \left(1 - \frac{k_{r}cd}{k_{f}ab}\right)$$

$$= k_{f}ab \left(1 - \frac{1}{K_{eq}}\frac{cd}{ab}\right)$$

$$= k_{f}ab \left(1 - \frac{\Gamma}{K_{eq}}\right)$$

 $\Gamma/K_{eq} = 1$: Equilibrium (v = 0) $\Gamma/K_{eq} < 1$: Reaction proceeds forward (v > 0) $\Gamma/K_{eq} > 1$: Reaction proceeds backward (v < 0)

Exercise I

- Example: suppose you start with IM of A and no B and C. Which of the following series will lead to the greatest [C]_{eq}?
- (Remember $\text{Keq}_T = \text{Keq}_1 \times \text{Keq}_2$)
 - Series 1

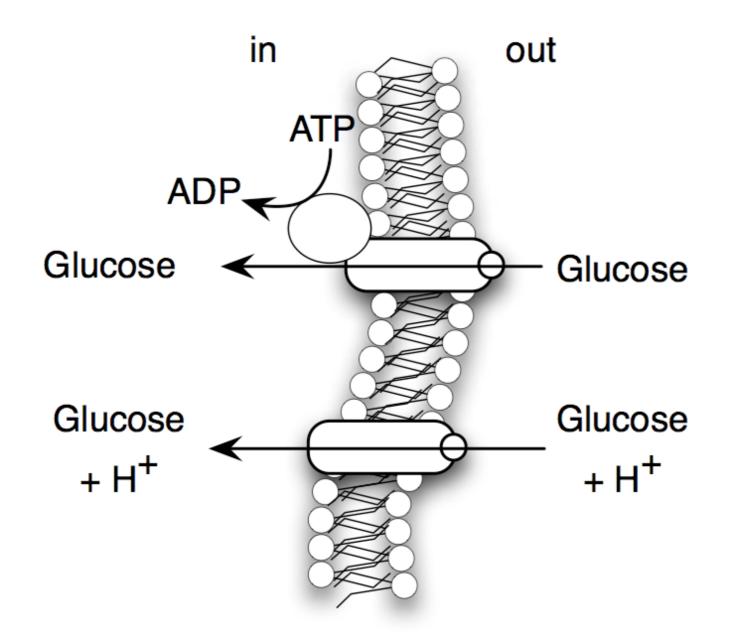
$$\begin{array}{rcrcrcrcrc} A &\rightleftharpoons & B & \Delta G^{\circ} &=& +18,85 \, \mathrm{kJ} \, \mathrm{mol}^{-1}; & K_{eq} &=& 5 \times 10^{-4} \\ B &\rightleftharpoons & C & \Delta G^{\circ} &=& -18,85 \, \mathrm{kJ} \, \mathrm{mol}^{-1}; & K_{eq} &=& 2 \times 10^3 \end{array}$$

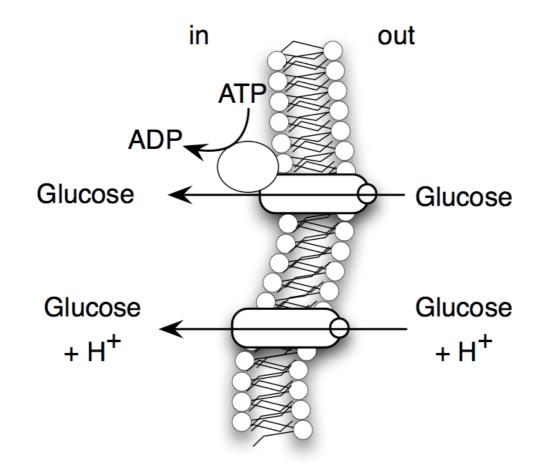
• Series 2

$$\begin{array}{rcrcrcrcrc} A &\rightleftharpoons & B & \Delta G^{\circ} &=& -18,85 \, \text{kJ mol}^{-1}; & K_{eq} &=& 2 \times 10^3 \\ B &\rightleftharpoons & C & \Delta G^{\circ} &=& +18,85 \, \text{kJ mol}^{-1}; & K_{eq} &=& 5 \times 10^{-4} \end{array}$$

$$[A] + [B] + [C] = 1M$$
$$[A]_{eq} + [B]_{eq} + [C]_{eq} = 1M$$

Exercise 2: Experimental data


t	a	b
(s)	(mM)	(mM)
0	10.	0.
1	7.5274	2.4726
2	5.86997	4.13003
3	4.75896	5.24104
4	4.01422	5.98578
5	3.51501	6.48499
6	3.18038	6.81962
7	2.95607	7.04393
8	2.80572	7.19428
9	2.70493	7.29507
10	2.63737	7.36263
11	2.59208	7.40792
12	2.56172	7.43828
13	2.54137	7.45863
14	2.52773	7.47227
15	2.51859	7.48141
16	2.51246	7.48754
17	2.50835	7.49165
18	2.5056	7.4944
19	2.50375	7.49625
20	2.50252	7.49748


For a non-catalysed, chemical reaction; A<->B the following experimental data were obtained:

Calculate:

- reaction rate at t=5 s
- Keq
- k(forward)
- k(reverse)
- mass action ratio at t=5 s
- reaction rate at t=20 s
- forward rate at t=20 s
- reverse rate at t=20 s

Coupling of processes

Example If we consider the ABC transporter as depicted in Fig. 15, and assume a ΔG_{ATP} for ATP hydrolysis of -57 kJ/mol, then we can calculate what the maximal glucose gradient would be at which the transporter could still import glucose, assuming 100 % efficiency of coupling between the two processes and a stoichiometry of 1 mol of glucose transported per mol of ATP hydrolysed (i.e. 57 kJ/mol is available per mol of glucose transported):

$$\Delta G_{Glc_{up}} = RT \ln \frac{x_{in}}{x_{out}}$$

$$57 \cdot 10^3 = 8.31447 \cdot 298.17 \cdot \ln \frac{x_{in}}{x_{out}}$$

$$\frac{x_{in}}{x_{out}} = 1 \cdot 10^{10}$$

Exercise 3

- Calculate the maximal glucose gradient possible for a proton symport system with a stoichiometry of 2 protons per glucose molecule, if there is a pH difference of -0.3 (inside 6.7, outside 7.0), and the membrane potential is
 - -200mV (negative inside).
- R=8.31447 J/K/mol, T=298.17 K,
 F=96.485 kJ/V