Biochemistry 714 Mini-course:
Molecular Systems Biology
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Prof Johann Rohwer (lectures), Dr Dawie van Niekerk (tutorials and data analysis),
Prof Jacky Snoep (tutorials and practical)

March — April 2025
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* Face-to-face lectures will take place in the Biochemistry Seminar Room (A111)

* Face-to-face computer practicals and data analysis will take place in the computer lab
(JC Smuts B215, departmental computers or own laptops)

* Practical enzyme kinetics experiments will take place in the molecular systems biology lab
(JC Smuts B203A)



Course material

® Available at:
https://glue.jjj.sun.ac.za/jjj/ minicourse/

® Molecular Systems Biology textbook available as
pdf

® |l ecture notes Biochem 323
® lLecture slides

® lutorials & Mathematica notebooks


https://glue.jjj.sun.ac.za/jjj/minicourse/
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From Sequence to Network
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Molecular Systems Biology

Topology studies show networks but are far
removed from functional behaviour.

Classic analyses are qualitative and cannot
relate the properties of a system to its
components.

Applications in medicine (drug target
identification) and biotechnology (metabolic
engineering), need specific targets in the
system (molecular mechanism).

With a molecular systems biology analysis
we aim to understand systems on the basis
of the characteristics of their components.



Metabolism
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Metabolic and signal transduction
networks
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is the science that studies how biological
function emerges from the interactions between
the components of living systems.

Macromolecules
(dead) 7
Interaction
!
Function
Functional

organisation




Networks and reactivity

e Links In networks indicate reactions,
(association, dissociation, isomerization)

e [0 react (or bind) molecules need to first
meet

e metabolites + enzymes or protein +
protein

A+B — AB
v=Kk-a-b



e crowded cellular
environment

e Mmolecules
undergo random
movement (walk)

e rate of diffusion
related to rate of
association




Diffusion and reactivity

e Diffusion coefficient (D) strongly
dependent on size (metabolites fast,
proteins slow).

e Diffusion sets an upper limit to reaction
rates.

« MSB book: p. 22-23



Kinetics of individual
reaction steps

® Individual reaction step is the lowest level of
systems description in our approach

® Most reactions in biological systems are
catalysed by enzymes

® e start first with non-catalysed, chemical
(mass-action) kinetics and then move to
enzyme-catalysed reactions



Kinetics of chemical reactions

® Why does a reaction occur?

® \VVhat determines the direction of a reaction, i.e.
forward or reverse!

® VVhat determines the rate of a reaction!?
® VWhen does a reaction rate go to zero!

® How do the molecules know whether they should
react or not!

® Net reaction rate, micro-reversibility, statistics



Driving force of a reaction

® A reaction will only occur if the Gibbs free-
energy content of the products is less than
that of the substrates, i.e. AG<0

® Gibbs free energy change determines the
direction of the reaction

® | he rate at which a reaction occurs is
dependent on both thermodynamics and
kinetics



Three types of elementary reactions

1. an association between two molecules to form a
non-covalently bound complex,

A+B— A-B
2. a dissociation of a complex into two molecules,
A-B—A+B

3. an interconversion where one molecule is chemically
transformed into another (an isomerisation).

A— B



Reaction mechanism

Breaking a reaction up into irreversible elementary reactions:

A+B=C

could have the mechanism

A+B=A-B=C

Each half of the double arrow (=) denotes one of the
elementary reactions.



The rate of a chemical reaction

The law of mass action states that for any elementary reaction,

e.g.,

A+B— A-B

the reaction rate is proportional to concentration

U Xa and vxb

where
v 1s the rate of reaction
a and b are the concentrations of A and B.

v X ab



The reaction rate v thus has units of concentration-time L.



Rate equation

The proportionality between rate v and concentrations a and b
is transformed into a rate equation by inserting a constant,
called the rate constant:

A+B—A-B

v = kab

Reaction order
» First-order with respect to A
» First-order with respect to B

» QOverall order: 2



Determining reaction order

A+B—

v = ka’ b1

p and g are the unknown orders.

Taking logarithms on both sides we obtain

Inv=Ink+plna+glnb

Plot In v against either Ina or Inb to obtain p or 4.



dlnv
dlna

evaluated at a given a.

More correctly, because v is a function of both 4 and b,

Jdlnv
dlna /,
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Molecularity and reaction order

» Molecularity: the number of molecules that react
(stoichiometric coefficients in a balanced reaction
equation).

» Reaction order: experimentally determined quantity
(generally not related to stoichiometric coetficients).



Mass-action

A+B=C

is a combination of the forward reaction

A+B—C with rate equation v = keab
and the reverse reaction

C—>A+DB with rate equation vy = k.C

The net rate of reaction is the difference between the forward
and reverse rates

v = v — Uy = keab — kC



At equilibrium:
v=vf—0r =0
Therefore
kf(a)eq(b)eq kr(c),.g‘,7 =0
so that
kf (C)eq




General reaction

mA +nB = pC +gD

where m, 1, p, and q are the stoichiometric coefficients. From
the rate equations for the forward and reverse reactions

ve = kb and v, = k.cPd1

and using the equilibrium condition we obtain

(C)eqp (d)eqq
(‘Z)eqm(b)eqn

Keq =



Z_; = k};a% = (13)/ Kea

The quantity c/ab is so important that it has been given a
special name, the mass-action ratio, usually symbolised by I
(capital Greek gamma).



only
reactants

equil. only
mixture products

Standard
conditions Equilibrium
I | | | >
! 1 Keq °
P = KL | | | .
Keq
O0<p<1 o>1
In Y < I I .
— 00 ~ InKeq 0 0o
ArG = RTInp < = | ,
~®  AG® = -RTInK 0 %

AG <0 AG >0



AG = RT In d
Keq
i 1



A=21H

* gradient increases as reaction
moves further away from eq

e equilibrium AG =0
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A=B=C

Individual equilibrium constants

(b)eq (C)eq
K —- and K "=
i (a)eq K (b)eq
For the sequence as a whole
(C)eq
K —
It follows that:
(b)eq (C)eq (C)eq



Kinetic and energetic components

Consider a possible rate equation for the reaction

['/Keq <

A+B=C+D

v = kb — kecd

k.cd
— kfﬂb (1 kfﬂb)
1 cd
— kfﬂb (1 Keq ab)

I
— kfab (1 Keq)

|: Equilibrium (v = 0)

1: Reaction proceeds forward (v > 0)

['/Keq >

1: Reaction proceeds backward (v < 0)



Exercise |

® Example: suppose you start with |M of A and no B and C. Which of the
following series will lead to the greatest [C]_ !

® (Remember Keq; = Keq, x Keq,)

e Series 1

e Series 2

A
B

A
B

B AG®
C AG®

B AG®
C AG®

+18,85k] mol™%;
—18,85k] mol ™ ;

—18,85k] mol ™ ;
+18,85k] mol ™ *;

Keq

= 5x10%
= 2x10°

= 2x10°
— 5x10*

Al +[B] +[C] =1M
[A]eq + [B]eq + [C]eq — ].M



t

Exercise 2: Experimental data

For a non-catalysed, chemical reaction;

00 ~] h N o= W N = O . — (T

Rl el el e =
O W m =1 UWU b wh O

a b

(mM)  (mM) A<->B the following experimental data were
0- . obtained:
7.5274 2.4726 -
5.86997 4.13003

4.75896 5.24104

4.01422 5.98578

3.51501 6.48499 Calculate:
3.18038 6.81962 : _
95607 7 04103 ® reaction rate at t=5 s
2.80572 7.19428 e Keg

2.70493 7.29507

2.63737 7.36263 ® k(forward)

2.59208 7.40792 ® ((reverse)

2.56172 7.43828 , ,

> 54137 7.45863 ® Mass action ratio att=5s
2.52773 7.47227 : _

e mse o 48ial ® reaction rate at t=20 s
2.51246 7.48754 ® forward rate at t=20 s
2.50835 7.49165 _

S 056 7. 4944 ® reverse rate at t=20 s
2.50375 7.49625

2.50252 7.49748



Coupling of processes

N _ out

Glucose <=

Glucose

+HT

Glucose

+HT

<



in -~ out

ADP

Glucose = Glucose
Glucose < Glucose
+HT +HT

Example If we consider the ABC transporter as depicted in Fig. 15, and assume a AGatp for ATP
hydrolysis of —57 kJ/mol, then we can calculate what the maximal glucose gradient would be at
which the transporter could still import glucose, assuming 100 % efficiency of coupling between the
two processes and a stoichiometry of 1 mol of glucose transported per mol of ATP hydrolysed (i.e.
57 kJ /mol is available per mol of glucose transported):

&GGF-EHF — RT]’“ in
Xout
57-10° = 8.31447 -298.17 - In Ain
Xout
tin  _ 1.1010

Xout



Exercise 3

® Calculate the maximal glucose gradient
possible for a proton symport system with a
stoichiometry of 2 protons per glucose
molecule, if there is a pH difference of -0.3
(inside 6.7, outside 7.0), and the membrane
potential is
-200mV (negative inside).

® R=8.31447 |/K/mol, T=298.17 K,
F=96.485 k|/V



