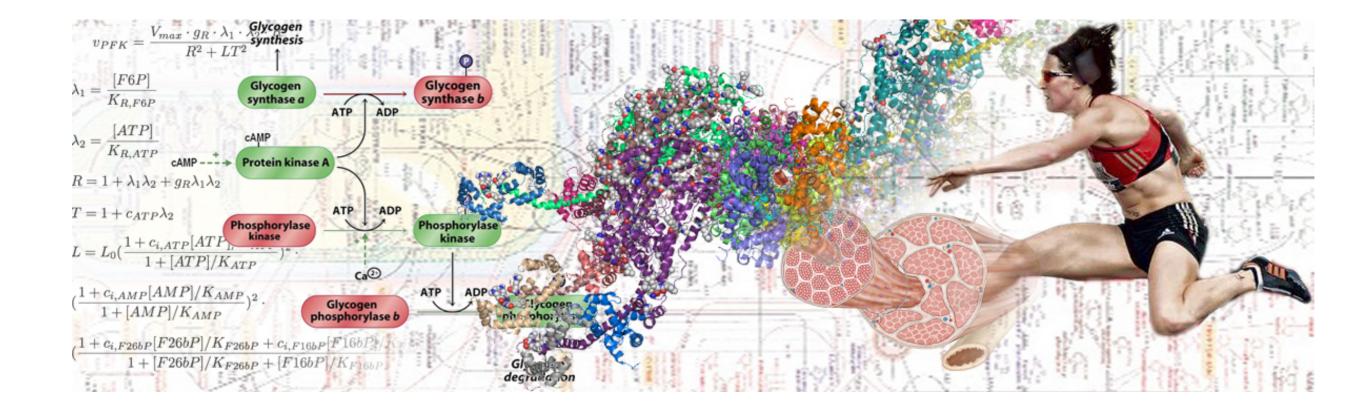
Biochemistry 714 Mini-course: Molecular Systems Biology



Prof Jacky Snoep (lectures), Prof Johann Rohwer (tutorials and data analysis), Dr Dawie van Niekerk (practical)

March - April 2024

Thus far

- First Lecture: Chemical kinetics
- Direction of reaction: ΔG , Γ/K_{eq}
- How far: K_{eq} , ΔG^0
- How fast: mass action kinetics
- Second Lecture: Enzyme kinetics
- Derivation of rate equations: equilibrium binding, steadystate approximation
- V_{max}, K_m , saturation, cooperativity, allostery, reversibility, product inhibition
- Third Lecture: Coupled reactions
- Parameter estimation; initial rates, progress curves
- Closed, open systems; equilibrium, steady state, rate characteristics
- Kinetic model of simple pathways in steady state

Network analysis

- For a given system, derive N, K, L matrices, interpret them
- Flux modes
- Solution space, FA

Kinetic model of a coupled reaction network

$$\frac{d\mathbf{s}}{dt} = \mathbf{N}\mathbf{v}[\mathbf{s}, \mathbf{p}]$$

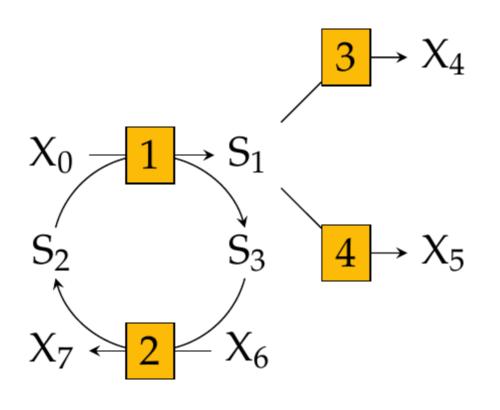
ere, for a system of *n* coupled re

where, for a system of *n* coupled reactions that interconvert *m* metabolites:

- **s** = *m*-dim vector of metabolite concentrations
- $N = m \times n$ matrix of stoichiometric coefficients
- **v** = *n*-dim vector of reaction rates
- **p** = *p*-dim vector of parameters

Analysis of the stoichiometric matrix, N

Stoichiometry matrix, N



$$ds_1/dt = v_1 - v_3 - v_4$$

 $ds_2/dt = v_2 - v_1$
 $ds_3/dt = v_1 - v_2$

$$\frac{d\mathbf{s}}{dt} = \begin{bmatrix} 1 & 0 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}$$
$$\frac{d\mathbf{s}}{dt} = \mathbf{N}\mathbf{v}[\mathbf{s}, \mathbf{p}]$$

-

The nullspace of **N** and flux-relationships

In steady state $\frac{ds}{dt} = Nv = 0$ and rates, v, are now called fluxes, J. If J_3 and J_4 (the R_3 and R_4 -columns without pivots) are chosen as the independent fluxes, J_i :

$$\begin{bmatrix} J_3 \\ J_4 \\ J_1 \\ J_2 \end{bmatrix} = \begin{bmatrix} J_3 \\ J_4 \\ J_3 + J_4 \\ J_3 + J_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} J_3 + \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} J_4 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} J_3 \\ J_4 \end{bmatrix}$$

or

$$\mathbf{J} = \mathbf{K} \mathbf{J}_{\mathbf{i}} \quad \text{or} \quad \begin{bmatrix} \mathbf{J}_{\mathbf{i}} \\ \mathbf{J}_{\mathbf{d}} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{r} \\ \mathbf{K}_{0} \end{bmatrix} \mathbf{J}_{\mathbf{i}}$$

where **K** is the nullspace or kernel of **N**.

The link-matrix, L, and ODE relationships

Either S_2 or S_3 can be chosen as the dependent metabolite, S_i . Choose S_3 .

$$\begin{bmatrix} \dot{s}_1 \\ \dot{s}_2 \\ \dot{s}_3 \end{bmatrix} = \begin{bmatrix} \dot{s}_1 \\ \dot{s}_2 \\ -\dot{s}_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \dot{s}_1 + \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \dot{s}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \dot{s}_1 \\ \dot{s}_2 \end{bmatrix}$$
or

$$\frac{d\mathbf{s}}{dt} = \mathbf{L}\frac{d\mathbf{s}_{\mathbf{i}}}{dt} \quad \text{or} \quad \frac{d}{dt} \begin{bmatrix} \mathbf{s}_{\mathbf{i}} \\ \mathbf{s}_{\mathbf{d}} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_r \\ \mathbf{L}_0 \end{bmatrix} \frac{d\mathbf{s}_{\mathbf{i}}}{dt}$$

where **L** is the link-matrix

The reduced stoichiometry matrix

$$\mathbf{N} = \begin{bmatrix} 1 & 0 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix}$$

From the stoichiometry matrix N, delete the rows that correspond to dependent metabolites (here S_3):

$$\mathbf{N}_{\mathbf{R}} = \begin{bmatrix} 1 & 0 & -1 & -1 \\ -1 & 1 & 0 & 0 \end{bmatrix}$$

The reduced stoichiometry matrix

$N = LN_R$

$$\mathbf{N} = \begin{bmatrix} 1 & 0 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 & -1 \\ -1 & 1 & 0 & 0 \end{bmatrix}$$

Kinetic model of a coupled reaction network

$$\frac{d\mathbf{s}}{dt} = \mathbf{N}\mathbf{v}[\mathbf{s}, \mathbf{p}]$$

For independent metabolites

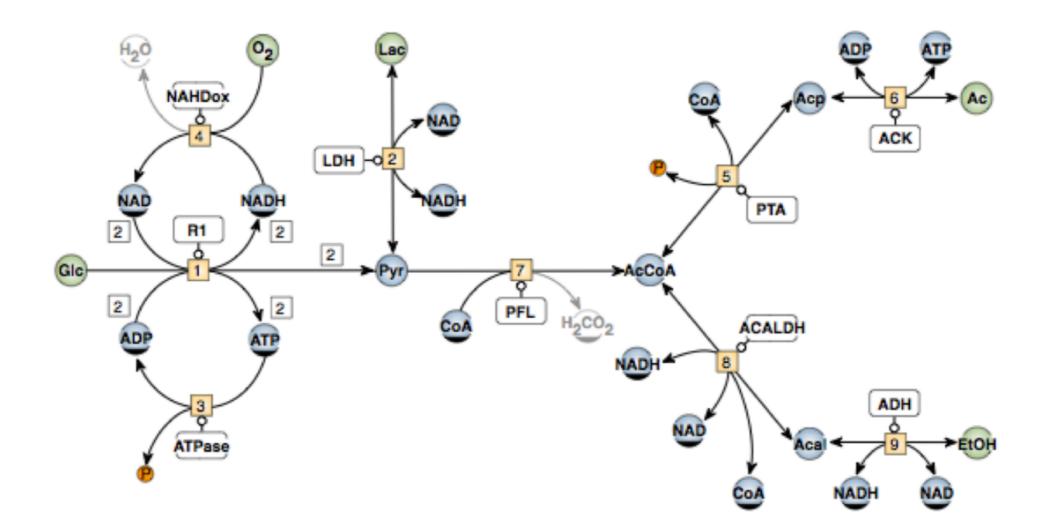
$$\frac{d\mathbf{s}_{\mathbf{i}}}{dt} = \mathbf{N}_{\mathbf{R}}\mathbf{v}[\mathbf{s},\mathbf{p}]$$

:

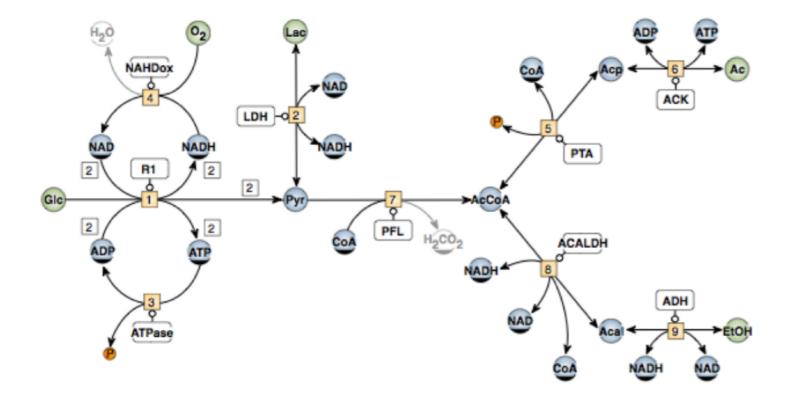
Combine

$$\frac{d\mathbf{s}}{dt} = \mathbf{L}\frac{d\mathbf{s}_{\mathbf{i}}}{dt} = \mathbf{L}\mathbf{N}_{\mathbf{R}}\mathbf{v}[\mathbf{s},\mathbf{p}]$$

Reaction network



Reaction network: N matrix (stoichiometry)



d(s)/dt

Ν

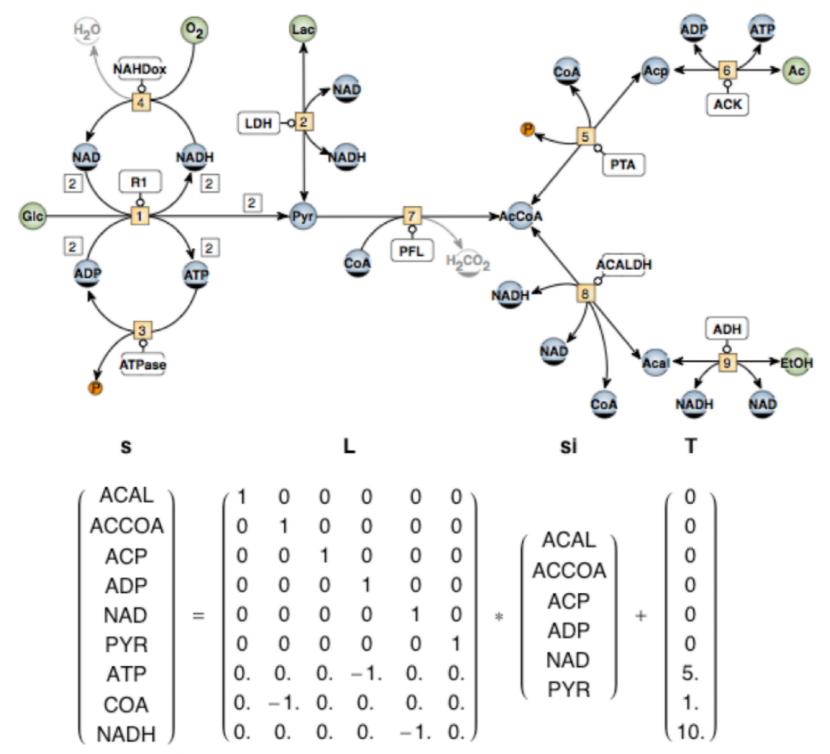
v

(d(ACAL)/dt d(ACCOA)/dt d(ACP)/dt d(ADP)/dt d(ATP)/dt d(COA)/dt d(NAD)/dt d(NAD)/dt	=	0 0 -2. 2. 0 -2. 2.	0 0 0 0 1. -1.	0 0 1. -1. 0 0	0 0 0 0 1. -1.	0 -1. 0 1. 0 0	0 0 -1. -1. 1. 0 0	0 1. 0 0 -1. 0	1. -1. 0 0 1. 1. -1.	-1. 0 0 0 1. -1.	*	v1 v2 v3 v4 v5 v6 v7 v8	
d(NADH)/dt d(PYR)/dt		2. 2.	-1. -1.	0 0	-1. 0	0 0	0 0	0 -1.	-1. 0	-1. 0		v8 v9	

N stoichiometry matrix

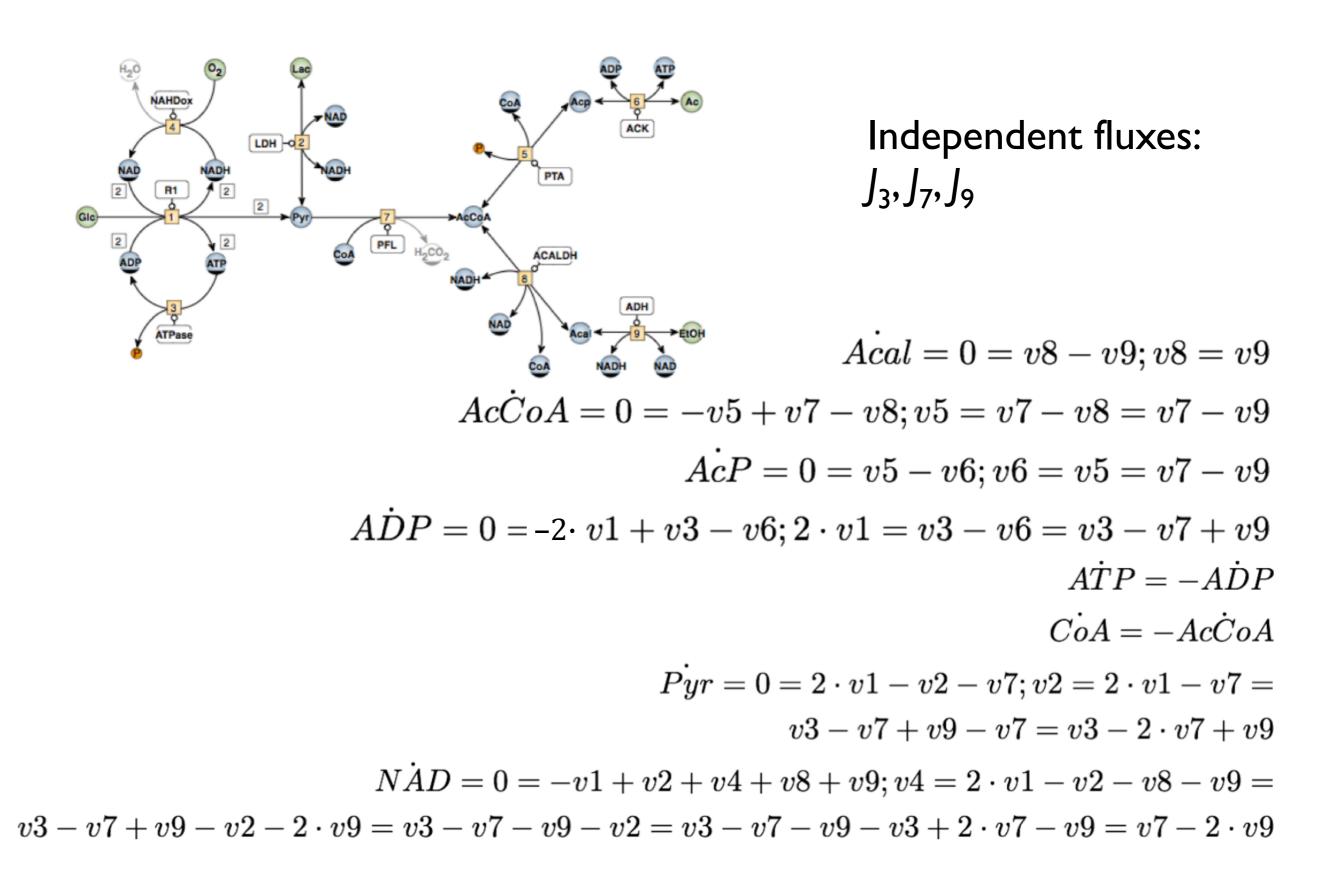
reaction rates

Reaction network: L matrix (link)

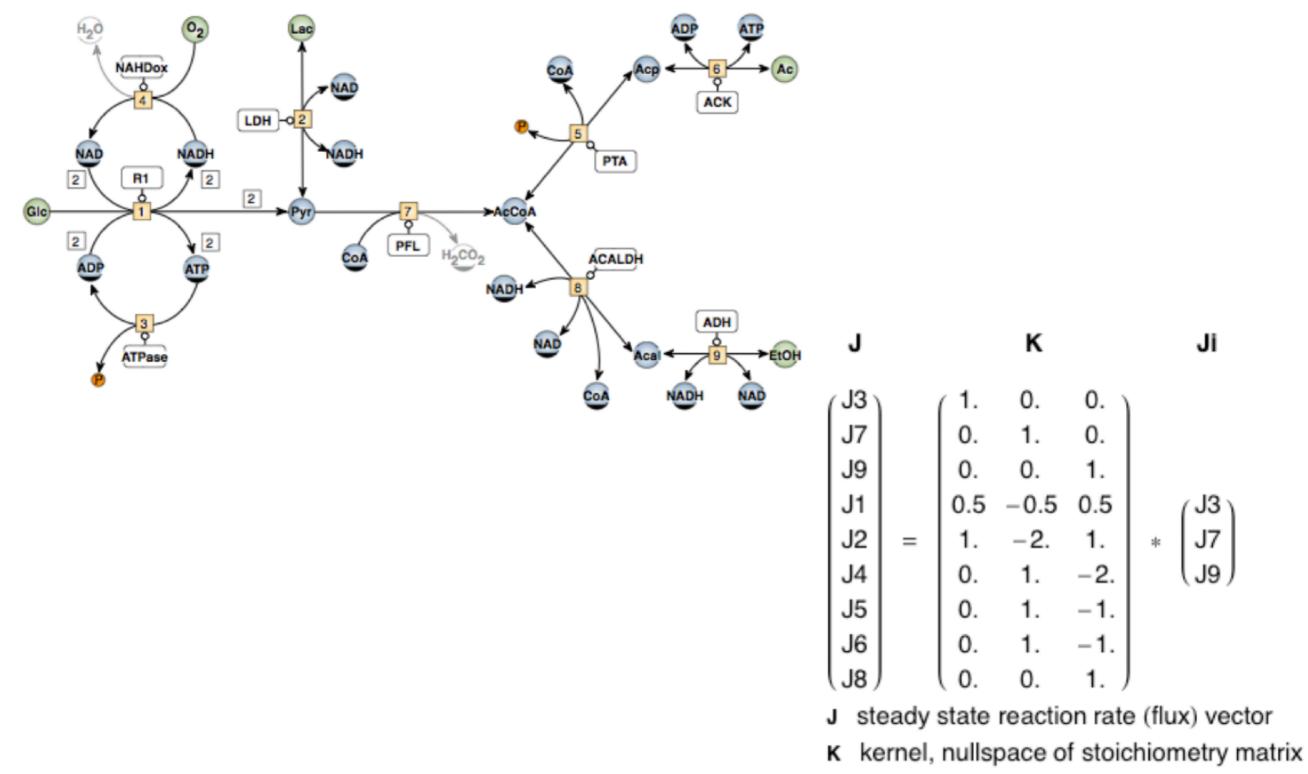


- s vector of metabolite concentrations
- L link matrix
- si vector of independent metabolite concentrations
- T vector of the sum of conserved moiety concentrations

Reaction network: steady-state constraint

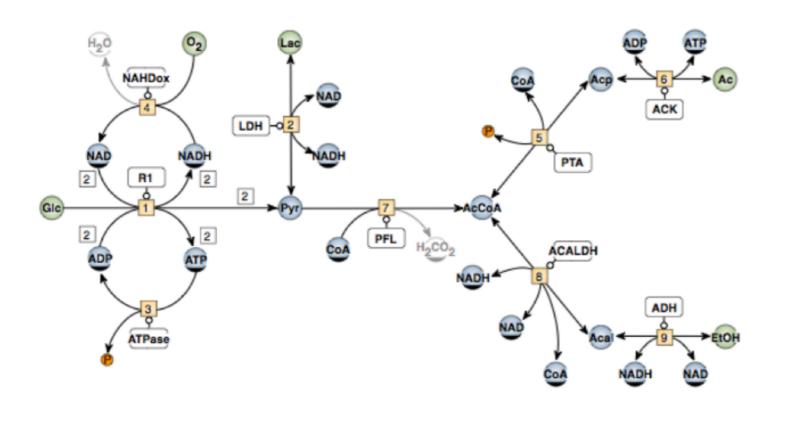


Reaction network: K matrix (kernel)



Ji independent flux vector

Reaction network: K matrix; flux modes



	J			к		Ji
(J	3)		(1.	0.	0.	
J	7		0.	1.	0.	
J	9		0.	0.	1.	
J	1		0.5	-0.5	0.5	(J3)
J	2	=	1.	-2.	1.	* J7
J	4		0.	1.	-2.	(J9)
J	5		0.	1.	-1.	
J	6		0.	1.	-1.	
(J	8)		0.	0.	1.)	
	ete	adv	etata	roactic	on rate	o (flux) yoo

J steady state reaction rate (flux) vector

- κ kernel, nullspace of stoichiometry matrix
- Ji independent flux vector

- col. I = homolactic fermentation
- 2×col.l + col.2 = homo-acetate fermentation
- $col.3 + 2 \times col.2 + 3 \times col.1 = mixed acid fermentation$