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First Lecture:
Chemical Kinetics

order of reaction vs molecularity
direction of reaction, AG

mass action kinetics

mass action ratio

disequilibrium ratio, /K,

AGP, relation to K,



Second Lecture:
Enzyme Kinetics

derivations of reversible Michaelis-
Menten kinetic equation using
equilibrium binding model

Haldane relation
characteristics of enzyme kinetics

types of inhibition



Michaelis-Menten kinetics

Michaelis Menten equation describes enzyme activity
In absence of product:

This equation Is often used for the description of
initial rates of in vitro enzyme activities, but
generally does not work for coupled reactions due
to the presence of product in such systems.



Deriving a kinetic rate eguation:
equilibrium binding approach

1.
2.

3.

Write down mechanism

Write down conservation equation for enzyme
species

Assume equilibrium binding of substrates and
products

Express bound enzyme species In terms of
free enzyme, [S] and [P], and thelir
dissociation constants

. Work out fractional saturation with S and P
. Solve v = kK{ES] — k [EP]



Derivation of irreversible Michaelis-
Menten equation: equilibrium binding

E4+S=ES—-E+P
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Deriving a kinetic rate eguation:
steady-state approximation

1. Write down mechanism

2. Write down conservation equation for enzyme
species

3. Assume steady state for bound enzyme
species

4. Express bound enzyme species In terms of

free enzyme, |S] and [P], and the rate
constants of the mechanism

5. Work out fractional saturation with S and P
6. Solve v = k{ES] — k [EP]



Derivation of irreversible Michaelis-Menten
equation: steady-state approximation

E4+S=ES—>E+P

dle)/dt = —ki-e-s+k_1-es+kg-es
dles)/dt =k1-e-s—k_1-es—ka-es

steady state approximation
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Reversible form of the
Michaelis-Menten equation

Equilibrium binding assumption

ko
E4+S=FES=FEP=F+P
Kg k_» Kp

Dissociation constants Ks and Kp Conservation relation
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Reversible form of the
Michaelis-Menten equation (2)

Ko
E+S=ES=FEP=FEF+P
Kg k_» Kp

Fraction of enzyme In ES form, Yes:
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Reversible form of the
Michaelis-Menten equation (3)

ko
EFE+S=ES=FEP=FE+P
Kg k_o Kp
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Reversible Michaelis-Menten:

Steady-state approximation
kq ko k
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Reversible Michaelis-Menten:
Steady-state approximation (2)
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Haldane relation

. S . P
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at equilibrium v = 0:

S 4
me' KE; = Vir - Ke-i

leading to the Haldane relation (not limited to eqg. state)

me - Kp _ DPegq
er 'KS' B S—Eq
Vs - Kp
Keq-Ks

:Keq

er




Reversible Michaelis-Menten:
second form (in terms of K,)

. -
me Ks Vinr Kp
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' Ks ' Kp

T =

substituting Vmr with the Haldane relation:




Try it yourself!

Derive the rate equation for an enzyme acted on by an
iInhibitor I, with the following mechanism:

Ko
E+S=ES=FEP=FEF+P
Kg k_» Kp

I




Multiple subunits: Cooperativity

In enzymes consisting of more than one subunit,
the binding of substrate to a subunit can influence
the binding of substrate to the other subunit(s). This

effect Is called cooperativity and can be positive or
negative.

Rate equations for enzymes showing cooperativity,
typically have the (s/K,) term taken to a power h
(h>1, positive; h<1, negative cooperativity). The well
known sigmoidal saturation curve Is typical for
positive cooperativity.

Hill-equation:




Other binding site: allostery

Some enzymes have other binding sites In
addition to the the active site. Binding to such
sites can effect the activity of the enzyme. This
effect Is called allostery, the effect can be positive
or negative.



Reversible Hill equation

A relatively simple kinetic equation that
can accommodate cooperativity and

allosteric effectors iIs the reversible Hill
eguation:

Vs 585 (1= (& + &)1

( s | _P )h L A+ (z/ K"
Ks ' Kp ' 14 a(z/ K )P

1) =

with X as allosteric effector: if a<l then
X Is an inhibitor, If a>1 an activator.

Reduce the above equation by
substituting: a=1, h=1, p=0.



Analysis of experimental data

For an enzyme catalyzed, chemical reaction,
A — B, the following initial rates were obtained

Y, a b
(mM/s)| (mM) | (mM)
9.9 10 0
/.86 10 5
9.8 5 0
6.01 10 10
-30.3 0 10

-32.68 0 50

(a and b given at t = 0):

Assume a random order
mechanism and rapid equilibrium
binding of substrate and product.

Calculate:



The calculations shown here are examples; there are
several correct ways to come to the answer.

Random order mechanism, rapid equilibrium binding; the reversible MM equation can be used:
a_ §
Vm - (1 .. )

1+ 2 + 2

Ku KE::
Both parameters can be calculated from the 2 incubations without b added at t=0. In absence of b the above equation reduces
to the irreversible MM equation. Using the irreversible MM equations the 2 incubations lead to 2 equations with 2 unknowns:

{

Vmax,f and Ka

Vm - 2 Vm - 2 Vm - 2
v= Hei9.9= K. 5.95 = e
1+Ku 1+K_u. 1+H_r_n

Which can be solved (e.g. expressVm in terms of Ka using the first equation and substitute this expression in the second
equation): Ymax,f=10 mM/s, Ka=0.1 mM

Vmax, r and Kp Same as for Ymaxf and Ka but now using the 2 incubations without a:

Vmr - -2 Vmr - 12 Vmr - 22
v=— 2 —30.30 = — X 32.68 = — .
Vmax,r=33.33 mM/s, Kb=1 mM
Haldane relation

V., K 10 -1
Keg=-—2 2. 3=
Vinr - Ka 33.33-0.1



