Overview of Research Activities

Prof Johann Rohwer

Laboratory for Molecular Systems Biology Department of Biochemistry Stellenbosch University South Africa

Biochemistry Honours Students 23 March 2018

Theory

- generalised supply-demand analysis
- rate equations for modelling
- symbolic MCA
- in vitro vs. in vivo kinetics

Experiment

- NMR "metabolomics"
 - *in vivo, in situ, in vitro* metabolite measurements
- enzyme kinetics for modelling
 - in vivo enzyme kinetics
 - pH, macromolecular crowding

Model

- development of software (PySCeS, psctb, SymCA, RateChar)
- kinetic models of cellular systems
 - microbial energy metabolism
 - cellular redoxin networks (with Dr C Pillay, UKZN)
 - plant metabolism
 - glucocorticoid receptor dimerisation (with Prof A Louw)

Theory

- generalised supply-demand analysis
- rate equations for modelling
- symbolic MCA
- in vitro vs. in vivo kinetics

Experiment

- NMR "metabolomics"
 - *in vivo, in situ, in vitro* metabolite measurements
- enzyme kinetics for modelling
 - in vivo enzyme kinetics
 - pH, macromolecular crowding

Model

- development of software (PySCeS, psctb, SymCA, RateChar)
- kinetic models of cellular systems
 - microbial energy metabolism
 - cellular redoxin networks (with Dr C Pillay, UKZN)
 - plant metabolism
 - glucocorticoid receptor dimerisation (with Prof A Louw)

Theory: Example

Generalised supply-demand analysis

Control analytic expressions

Problems with SDA

- Where to split system? Choice of intermediate
- Need for a generalised, programmatic, unbiased approach

Generalised supply-demand analysis

- Clamp each variable species of a model in turn and vary above/below steady-state value
- Plot fluxes through supply and demand reactions in log-log rate characteristic
- Compare elasticities and response coefficients

What can GSDA tell us?

- Potential sites of regulation
- $R = \epsilon \neq 0 \rightarrow$ regulatory metabolite
- $R \rightarrow 0, \epsilon \rightarrow 0 \rightarrow$ functional differentiation
- Different routes of communication quantified

Rohwer & Hofmeyr, J. Theor. Biol. (2008)

"Real" model

Curien et al. (2009, 2010)

GSDA around ASA

[Aspartate-Semialdehyde] (µM)

Knockout mutants

Christensen, Hofmeyr & Rohwer (2015)

Ongoing work

- Application to various "real-life" models
- Integration with symbolic MCA and enzyme kinetics/regulation
- Development of visualisation tools
- Extension of PySCeS
 - PySCeS toolbox (psctb) live demo!
 - RateChar
 - SymCA
 - thermokin
 - Christensen, Hofmeyr & Rohwer (2018) Bioinformatics

People

- Academic staff
 - Prof Jannie Hofmeyr
 - Dr Stefan van der Walt
- Students
 - Theo van Staden (Hons 2009)
 - Carl Christensen (Hons 2010, MSc 2011-2012, PhD 2013-2016, post-doc 2016-2017)

Experiment: Example

Enzyme kinetics for modelling by NMR spectroscopy ("*In vivo* enzyme kinetics")

Brief NMR introduction: Nucleus in magnetic field

Split in energy levels

Relaxation and Fourier Transform

E. coli central carbon metabolism

- Mixed acid fermentation provides substrate and O₂ flexibility
- PhosphoTransferase System
- PFL vs. PDHC

Why use NMR?

Initial rate assays

NMR progress curve assays

Workflow

Incubate, possibly supplementing with ¹³C-labelled substrate

modifiers co-factors

0

cell extract

2 Acquire time series of NMR spectra

Observation of the sector o

- ④ Fit splines to concentration time-courses, determine rates
- Global fit of data to parameterise rate equation

NMRPy

- Python NMR processing software suite
- no adequate software (proprietary or free)
- functionality:
 - processing, integration and deconvolution
 - arrayed spectra
 - interactive or batch processing
 - visualisation
- https://github.com/jeicher/NMRPy

³¹P-NMR time-course and spline-fitting of PGI

Rate equation fitting to PGI data

$$v = V_{ extsf{f}} rac{g6p \Big(1 - rac{\Gamma}{K_{ extsf{eq}}} \Big)}{1 + g6p + f6p}$$

Fitted parameters:					
Param.	Value				
V _f	3.551 ± 0.050				
G6P _{0.5}	0.550 ± 0.236				
F6P _{0.5}	0.152 ± 0.017				
$K_{ m eq}$	$0.286 \pm 8 imes 10^{-6}$				
(rates: µmol.min ⁻¹ .mg ⁻¹)					
(concentrations: mM)					

People

- Students who have completed their degrees
 - Christiaan Crous, MSc (Z. mobilis SDA)
 - Sandra Alberts, MSc (*L. lactis* SDA)
 - Justin Smith, MSc (S. cerevisiae SDA & kinetics)
 - Johann Eicher, PhD (*E. coli* SDA, kinetics & modelling)
- Academic staff
 - Prof Jacky Snoep

Ongoing work

- <u>Question</u>: are kinetic measurements in the *test tube* a realistic representation of *conditions in the cell*?
- Investigate "in vivo" enzyme kinetics
 - effect of macromolecular crowding
 - intracellular environment has very little accessible solvent space, [protein] = 250 mg/ml
 - effect of pH changes
 - intracellular pH not as constant as always thought, signal?
- *E. coli* and *S. cerevisiae* glycolytic enzymes

Current Students

- Z. mobilis kinetics and modelling
 - Theo v. Staden, PhD (*Z. mobilis* kinetics & modelling)
- Macromolecular crowding
 - Julian Wissing, MSc
- pH effect on kinetics and modelling
 - Tiaan Swanepoel, MSc (Mar 2018), PhD

Effect of pH on PGI kinetics

Model: Example Modelling cellular redoxin networks

Laboratory for Mol. Systems Biology Dept. of Biochemistry Stellenbosch University South Africa

School of Life Sciences UKZN Pietermaritzburg South Africa

Redoxin networks are essential for all living organisms

Redoxin networks play important roles in health and disease

Oxidation states of biological thiol groups

Finkel (2011) J. Cell Biol.

Contents

- Enzymes or redox couples?
- Unravelling ultrasensitivity in the Trx system
- Dynamics of H₂O₂ metabolism
- Conclusions

Thioredoxin system

Model III. Fillay et al. 2009 Biochem. J.

- classic Michaelis-Menten response
- model with mass action

Core model

$$B \qquad A \qquad k_1 \qquad K_2 \qquad M' \qquad M \qquad K_2 \qquad C \qquad D$$

$$\frac{dm'}{dt} = k_1 am - k_{-1} bm' - k_2 cm' + k_{-2} dm$$

• solve for *m* subject to steady state

$$m = \frac{m_t(k_{-1}b + k_2c)}{k_1a + k_{-2}d + k_{-1}b + k_2c}$$

- calculate V_2 $k_1 k_2 m_t a c \left(1 - \frac{\Gamma}{K_{eq}}\right)$ $v_2 = \frac{k_1 k_2 m_t a c \left(1 - \frac{\Gamma}{K_{eq}}\right)}{k_1 a + k_{-2} d + k_{-1} b + k_2 c}$
- irreversible case

$$v_2 = \frac{(k_1 a m_t)c}{\frac{k_1}{k_2}a + c}$$
 Apparent V_{max} : $k_1 a m_t$
Apparent K_m : $\frac{k_1}{k_2}a$

$$\frac{k_{\text{cat}}}{K_{\text{m}}} = k_2$$

Pillay et al. (2009) Biochem. J.

Changes in apparent Michaelis-Menten parameters

Model Parameters			Apparent M-M Parameters				
V _{TR}	k ₂	[Trx] _t	NADPH	K _m	V _{max}	k _{cat}	$k_{\rm cat}^{\prime}/K_{\rm m}^{\prime}$
1	1	2	1	0.186	0.386	0.193	1.035
10	1	2	1	2.183	4.378	2.189	1.003
100	1	2	1	21.925	43.860	21.930	1.000
1	10	2	1	0.012	0.348	0.174	14.620
1	100	2	1	0.001	0.333	0.167	263.158
1	1	50	1	0.001	0.496	0.010	8.333
1	1	0.1	1	0.462	0.046	0.463	1.002
1	1	2	10	0.356	0.724	0.362	1.018
1	1	2	0.1	0.026	0.065	0.032	1.236

Contents

- Enzymes or redox couples?
- Unravelling ultrasensitivity in the Trx system
- Dynamics of H₂O₂ metabolism
- Conclusions

Simplified model

Ultrasensitivity i.t.o. MCA

Conditions for ultrasensitivity

$$C_{1}^{J_{2}} = \frac{-J_{1}\varepsilon_{R_{T}}^{v_{2}}\varepsilon_{R_{P}}^{v_{3}} + J_{1}\varepsilon_{R_{T}}^{v_{2}}\varepsilon_{R_{P}}^{v_{4}}}{J_{1}\varepsilon_{R_{T}}^{v_{1}}\varepsilon_{R_{P}}^{v_{3}} - J_{1}\varepsilon_{R_{T}}^{v_{1}}\varepsilon_{R_{P}}^{v_{4}} - J_{2}\varepsilon_{R_{T}}^{v_{2}}\varepsilon_{R_{P}}^{v_{3}} + J_{2}\varepsilon_{R_{T}}^{v_{2}}\varepsilon_{R_{P}}^{v_{4}} + J_{4}\varepsilon_{R_{T}}^{v_{3}}\varepsilon_{R_{P}}^{v_{4}}}$$

$$-\frac{J_1\varepsilon_{R_T}^{v_1}}{J_4\varepsilon_{R_T}^{v_2}} + \frac{\varepsilon_{R_T}^{v_3}\varepsilon_{R_P}^{v_4}}{\varepsilon_{R_T}^{v_2}\left(\varepsilon_{R_P}^{v_4} - \varepsilon_{R_P}^{v_3}\right)} < 1$$

Condition 1:

Condition 2:

$$\begin{aligned} &-\frac{J_1 \varepsilon_{R_T}^{v_1}}{J_4 \varepsilon_{R_T}^{v_2}} < 1 \\ &\frac{\varepsilon_{R_T}^{v_3} \varepsilon_{R_P}^{v_4}}{\varepsilon_{R_T}^{v_2} \left(\varepsilon_{R_P}^{v_4} - \varepsilon_{R_P}^{v_3}\right)} < 1 \end{aligned}$$

Plot conditions

Rohwer et al. (2016) Perspect. Sci.

Contents

- Enzymes or redox couples?
- Unravelling ultrasensitivity in the Trx system
- Dynamics of H₂O₂ metabolism
- Conclusions

Response of *E. coli* model to oscillating H_2O_2

M. Badenhorst (2017)

Work in progress...

- comparative analysis of redoxin networks
 - Generalised Supply-Demand Analysis
- quantitative analysis of redox signalling
- develop kinetic models of
 - peroxiredoxins
 - dynamics of H_2O_2
 - effect of Prx decamerisation
 - Mycobacterium tuberculosis redoxin network

Conclusions

- Why should I model redoxin networks?
 - detect kinetic motifs
 - fit parameters from experimental data
 - explore untested scenarios
 - quantify control parameters
 - unravel mechanism

People

- University of KwaZulu-Natal (Pietermaritzburg)
 - Dr Ché Pillay
 - Diane Lind (MSc)
 - Nolyn John (PhD)
- Stellenbosch University
 - Prof Jannie Hofmeyr
 - Chris Barry (PhD 2017-)
 - Melinda Badenhorst (MSc 2018-)

Theory

- generalised supply-demand analysis
- rate equations for modelling
- symbolic MCA
- in vitro vs. in vivo kinetics

Experiment

- NMR "metabolomics"
 - *in vivo, in situ, in vitro* metabolite measurements
- enzyme kinetics for modelling
 - in vivo enzyme kinetics
 - pH, macromolecular crowding

Model

- development of software (PySCeS, psctb, SymCA, RateChar)
- kinetic models of cellular systems
 - microbial energy metabolism
 - cellular redoxin networks (with Dr C Pillay, UKZN)
 - plant metabolism
 - glucocorticoid receptor dimerisation (with Prof A Louw)

Interested in joining the lab?

- Contact me any time to discuss options!
- jr@sun.ac.za <u>or</u> 021-808-5843