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Preface

Cells are the fundamental units of life. Whether they exist as free-living organ-
isms or as building blocks for multicellular organisms, cells are truly amazing
molecular systems, consisting of up to several thousands of components whose
integrated activities lead to the functional behavior characteristic of life. Growth
and reproduction are of the most fundamental characteristics, but in addition
cells can adapt to various and varying conditions by changing their composi-
tion. Short term adaptations are made via regulation of gene expression, and on
longer time scales cells evolve via selection of beneficial mutations in the genetic
material.

The cells’ functional behavior emerges from the concerted activities of its
underlying reaction network; linking small molecules (metabolites) to macro-
molecules (enzymes, proteins, genetic material) to function (e.g. pathway fluxes,
signal transduction, growth rate, cellular adaptation). The cell is a dynamic
system, needing a continuous free-energy influx for maintenance and growth
delivered via the metabolic network, and adapting itself to changes in the en-
vironment, sensed by signal transduction networks. These networks cannot be
understood on the basis of individual reactions or metabolites; its dynamics are
crucially dependent on interactions between the components of the network.
Ultimately network behavior can be understood on the basis of the network
components and its interactions. This is the main aim of molecular systems bi-
ologists; to reach a quantitative understanding of cellular behavior on the basis
of the characteristics of the cellular components.

The multitude of components, reactions and interactions in cellular networks
and the non-linearity of many of its kinetics make cellular behavior both compli-
cated and complex. Whereas classic treatment of cellular networks is qualitative
(e.g. listing of components, reaction stoichiometries and interactions), or semi-
quantitative (e.g. positive or negative regulatory interactions, reactions close
or far away from chemical equilibrium), this cannot lead to the quantitative
understanding for which we aim.

Mathematical (modeling) approaches are essential for quantitative studies
of cellular systems, only via the integration of the activities of the network
reactions can our hypotheses and predictions be tested critically against exper-
imental data. Here is where the inter-disciplinary character of system biology
approaches comes into play as the iteration between experiment, model and
theory. These are extraordinary times for biological research with quantitative
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experimental data sets for complete systems becoming available. Such datasets,
in combination with knowledge of the systems’ components can be used to con-
struct and validate detailed kinetic models. Unlocking the enormous potential
of mathematical models that allow quantitative predictions of biological system
is one of the great challenges of our time!

In this book we focus on modeling and theoretical aspects of molecular sys-
tems biology approaches. We make use of simple systems for introducing the
concepts and apply them to detailed systems and make frequent references to ex-
isting scientific literature to maintain a strong link with experimental data. We
have written the book for final year undergraduate and postgraduate students
in the life sciences, physics, and engineering. In short introductory chapters
we fill potential gaps in biology or mathematics, and throughout the text we
explain concepts starting from generic principles all the way to examples in the
scientific literature. Topics include diffusion, chemical reaction kinetics, enzyme
kinetics, reaction networks, the kinetic model, metabolic control analysis, and
dynamic systems analysis. We hope you will enjoy reading and studying this
book and that it may enrich your understanding of cellular systems and help in
your research approaches.



Chapter 1

Cell biology 1.0.1

1.1 Cells are systems

Whereas the diversity of biological systems is often dazzling, there are some
general characteristics that hold for all organisms. In analogy to the statement in
physics; all material consists of atoms, for biology we can state that all organisms
consist of cells. Of course not all cells are the same, basic differences exist
between prokaryotic and eukaryotic cells, but from uni-cellular to mammalian
species, they all consist of cells. The central dogma to which all these cells adhere
is that DNA is transcribed to RNA which in turn is translated to proteins,
linking the genetic material to the working horse in the cell.

Proteins function as the ’workers’ inside cells, they perform all the tasks
within cells to support their repair, environmental sensing, nutrient acquisition,
and macromolecular turnover. Typically, proteins function as enzymes to cat-
alyze reactions such as metabolite conversions, protein phosphorylation in signal
transduction, DNA modifications to regulate gene expression and transport of
molecules over cellular membranes. Other proteins have structural roles such as
acting as components of the cytoskeleton, flagella or histones, which are involved
in DNA organization. The activity of each protein depends on its abundance.

The amount of a given protein per cell depends on its stability and the abun-
dance of its mRNA and translation rate. Each of these determinants may change
with environmental conditions. The level of any mRNA results from transcrip-
tion and degradation. The transcriptional activity of the corresponding gene
depends typically on a set of transcription factors, all proteins. Transcription
factors may be under the control of a signaling pathway, which may receive its
signal at a ligand-sensitive receptor embedded in the cellular membrane. This
example immediately indicates that we are quickly dealing with networks of
molecules inside cells when we aim to understand cellular behavior.

As networks are so intertwined, cellular functions are carried out concertedly
by whole segments of metabolism, signaling and gene circuitry. Any change at
the level of metabolism or signal transduction will then tend to ripple through
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2 CHAPTER 1. CELL BIOLOGY 1.0.1

the entire cellular network, with some segments responding strongly while oth-
ers remain robust. Feedback loops are all over molecular networks, linking dis-
tant segments of the network, contributing to sensitization or robustness upon
changes in the extracellular or intracellular environment. Feedback loops may
make cellular dynamics very counterintuitive to understand. This complicated
dynamics is often vital for the cell. We shall see that we quickly have to resort
to mathematical models and theory to understand the behavior of molecular
networks. This indicates that understanding of cell biology is not only about
biology but also about mathematical models and concepts from mathematics,
engineering, and physics.

In some abstract fashion, cells are ’just’ molecular networks. Even though
many properties at the cellular level are not always directly expressed or ob-
served in molecular terms, they do all derive from it, such as growth rate or cell
movement. Because cellular properties are so different from molecular prop-
erties, they are sometimes said to be emergent. For a scientist interested in a
particular biological phenomenon, it is then always a challenge to figure out how
emergent phenomenon arise out of the molecular interactions. Such a search for
a molecular mechanism involves identifying the molecular components, their in-
teractions, and key properties that contribute to the biological phenomenon to
be explained.

Even though, in principle, all molecules inside cells are linked to each other
through interactions, a particular phenomenon can be nearly always explained
in terms of a molecular mechanism that only refers to a subset of all cellular
molecules. Those explanations will often be in terms of mathematical models of
the molecular mechanism couched in terms of the kinetic properties of molecular
interactions. These models are central to this entire book.

In this chapter some examples of networks will be discussed - to give you
some insight into the sort of networks this book is all about. Some of the
recurrent properties of networks that are key to understand cell biology better
will be briefly introduced. All of them will return at some point in this book
where they will be explained in more depth.

1.2 Examples of molecular networks

1.2.1 Metabolic networks

Metabolic networks assimilate and convert nutrients into building blocks for cel-
lular components, such as lipids, nucleic acids and amino acids. Those building
blocks are converted further or polymerised by enzymes (or polymerize sponta-
neously) to yield proteins, RNA, DNA and membranes. For all these processes,
energy is required. Energy is generated in a segment of metabolism called
catabolism. This energy is required to make compounds in quantities and rates
that would otherwise not spontaneously occur. In other words, cells operate in
conditions out of thermodynamic equilibrium where an energy flux is required
for cell function and maintenance. Cells are organized systems kept contin-
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uously in a state out of thermodynamic equilibrium by processes that extract
energy from nutrients. Anabolism is responsible for the usage of energy to make
macromolecular components out of building blocks. Energy is stored in the dis-
placement of metabolite ratios from their thermodynamic equilibrium values as
we shall later on. The metabolites that act as the main energy carriers are ATP,
NADPH and NADH. In figure 1.1 an example of a well-studied and important
metabolic pathway, glycolysis, is presented. A segment of trehalose synthesis is
shown as well.

Glycolysis is involved in the conversion of sugars into building blocks and
energy metabolites. Many organisms rely on glycolysis; including yeast, most
bacteria, and us. It is composed out of a large number of enzyme-catalyzed
reactions in a sequence. Most of the reactions have multiple substrates and
products. Some of the enzymes are regulated in their activity through metabo-
lites that act as effectors, they are not consumed or produced by the reaction
they regulate. For instance, often pyruvate kinase (PYK) is strongly activated
by fructose-1,6-bisphosphate (F16P). This is indicated by the dashed arrows in
figure 1.1.

The organization of glycolysis is as follows. Sugars, such as glucose, are
composed out of six carbon atoms. Upto fructose-1,6-bisphosphate (F16P) all
intermediates in glycolysis are composed out of six carbon atoms. Aldolase
(ALD) then splits it into two molecules of composed out of three carbon atoms.
Upto F16P two ATP molecules have been invested. If no glycerol is formed then
4 ATP molecules are generated by the lower part of glycolysis out of 1 molecule
of glucose. If only ethanol is produced then at most two ethanol molecules can
be formed per glucose molecule and no net synthesis or degradation of NADH
will occur. The pathway will then only produce CO2 in addition to ethanol (plus
protons and water if the reactions are written in a higher level of detail). The
production of ethanol is called fermentation, which is an important process in
the rising of dough, beer brewing and wine making. In glycolysis a few branches
occur. Two of them are shown in figure 1.1. They lead to excretion products
or the construction of building blocks, for the synthesis of nucleic acids, amino
acids, storage molecules, or lipids.

The response of Saccharomyces ceresiae to a glucose pulse is shown in figure
1.2. Five gram of this yeast per liter medium consumed ≈ 52 mM of glucose
within 2 hrs and about 20 minutes. It excretes ethanol, which it consumed again
after glucose has been consumed. This is known as the short-term Crabtree
effect. The Crabtree effect refers to the behavior of S. cerevisiae to ferment -
produce ethanol - under aerobic conditions. Many organisms ferment only in
the absence of oxygen. The subsequent consumption of the produced ethanol is
known as diauxi.

The structure of the pathway has been known for nearly one hundred years.
Still biotechnologists are struggling with the metabolic engineering of this path-
way to make better yeast strains for beer breweries and wine making. Often such
studies aim at increasing the flux through glycolysis or the synthesis of ethanol.
In the field of metabolic engineering mathematical modeling of metabolic path-
ways is a growing activity to get more insight into which proteins should be
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Figure 1.1: Network of diagram of glycolysis as it occurs in Saccharomyces
cerevisiae, a yeast species of interest to biotechnology. It is also often used
as a eukaryotic model organism in cell biology and systems biology. The ar-
rows denote reactions, every reaction has a dedicated enzyme as a catalyst.
The enzyme name is written next to the reaction, e.g. HK, for the reaction
GLCINT + ATP 
 ADP + G6P . Double-headed arrows indicate membrane
transport reactions. Dotted lines with arrows denote an activating influence,
lines ending in perpendicular lines denote inhibition of a reaction.

enhanced or decreased in activity to get the desired effect. Detailed mathemat-
ical models of glycolysis on the basis of extensive amounts of experimental data
exist [33]. Often more than one enzyme needs to be changed in levels. This
can be easily grasped: as soon as one of the major limiting enzymes has been
enhanced in level another set of enzymes will become limiting. This delicate
interplay between enzyme level, activity and importance for determining the
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Figure 1.2: The dynamics of extracellular products of glycolysis upon a glucose
pulse to Saccharomyces cereviae [10].

synthesis and consumption of industrially relevant compounds is partly due to
glycolysis’ complicated regulation. Glycolysis will return a couple of times in
this book.

1.2.2 Signaling networks

Cells perseive their immediate environment through the action of membrane-
embedded receptors. Those proteins, often dimers, transmit the presence of
an external signal to proteins in the cytosol. Typically, upon ligand binding
the conformation of the intracellular side of the receptor alters or the receptor
modifies itself there, for instance by autophosphorylation. Downstream signal-
ing proteins have a high-affinity for such alterations in the receptor structure.
They form complexes with activated receptors to transmit the signal down-
stream. An example of a receptor driven signaling network is shown in figure
1.3. This signaling network is involved in regulating gene expression as function
of an external signal, transforming growth factor β (TFGβ), to alter cell growth,
adhesion, differentiation, and controlled cell death [28].

A number of proteins are involved in this process of TGFβ-induced gene reg-
ulation. Together they form a network with specific signaling properties that
benefit the cell, such as a high ligand specificity, sigmoidal or hyperbolic ligand-
dose transcription-factor-response relation, a response time, and the ability to
integrate additional (intracellular) signals. The function of the network for the
cell is determined by these network properties. They cannot be attributed to
one single signaling protein; they are determined by all proteins in the network
to varying extends. Hence, the entire network needs to be appreciated to un-
derstand how the cell uses this network for important decisions. This is what
makes the identification of anti-cancer or diabetes drugs complicated.

In the Smad network, multiple proteins form complexes and alter each other’s
activity by phosphorylation and dephosphorylation. Some of the processes in-
volve transport between the cytoplasm and nucleus over the nuclear membrane.
Nucleocytoplasmic transport requires a dedicated protein, called the nuclear
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Figure 1.3: Network diagram of the Smad signaling network that responds to
external TGFβ (TGF=transforming growth factor) levels [28]. This signaling
pathway, as many others, is involved in regulation of cell growth, adhesion,
migration, cell-fate determination and apoptosis.

pore complex. In addition, nuclear import and export requires a myriad of
other proteins that assist in attaining net accumulations of SMAD’s in the nu-
cleus or cytoplasm depending on the external level of TFGβ. All of those are
not shown in the diagram. The action of the phophatase in the nucleus leads to
the dephosporylation of SMAD2 in the nucleus and hereby SMAD4 is released
from the SMAD2P-SMAD4 complex. Representative dynamics of this signaling
network measured at the level of single cells is shown in figure 1.4. This net-
work has also been studied using mathematical models in tight interaction with
experiments [6, 29].

Signaling networks often have a design where multiple phosphorylations of
proteins occur in cascade. A prokaryotic and eukaryotic example are shown in
figure 1.5. In early days, the advantage of such designs were elusive. Math-
ematical models and theory have improved our understanding of the benefits
and trade-offs of signaling transduction cascades. Some of those aspects are
discussed later in this book.

A well-studied signal transduction cascade is the EGF-induced MAPK cas-
cade composed out of three MAPK proteins, MAPK, MAPKK, and MAPKKK.
In the early days of mathematical studies on this system, it was hypothesized
that this system could display high sensitivities of it’s output, ERKPP, to the
signal EGF, [18] and the system could display oscillations [20]. Even though,
ultrasensitivity remains slightly controversial and is perhaps condition depen-
dent, oscillations have now been observed experimentally at the level of single
cells [31] (see figure 1.6).
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Figure 1.4: Single-cell dynamics of fluorescently labelled Smad2, GFPSmad2,
and Smad4, GFPSmad4. Within 60 minutes both Smads translocate to the nu-
cleus upon addition of TGFβ. The addition of the receptor inhibitor, SB-431542,
causes Smad2 to return to the nucleus. Smad2 is then no longer phosphorylated
causing unphosphorylated Smad2 to accumulate in the cytoplasm. Smad4 is no
longer transported to the nucleus by phosphorylated Smad2. Smad4 export
from the nucleus is mediated by a transport protein CRM1. The activity of
CRM1 can be inhibited by LMB, which causes Smad4 to stay in the nucleus.
These data were taken from [26].

1.3 Examples of functional network properties
and important network findings

1.3.1 Cells are dynamic!

The dynamic responses of networks upon perturbation of cells, upon addition
of nutrients, toxins, or changes in temperature, are rarely isolated to a few
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Figure 1.5: Protein phosphorylation is a recurrent mechanism for signal trans-
duction (see also figure 1.3). Upon phosphorylation proteins change their affinity
for signaling partners. Two component signaling as often observed in prokary-
otes (and plants) and a mitogen activation protein kinase (MAPK) cascade.
MAPK signaling has been studied in great depth in the last decade using math-
ematical models and quantitative experimentation [21, 31, 18].

proteins. Most of the time a large part of network responds; ranging in time
scales from seconds to minutes to hours. Signal transduction and metabolism
are typically fast but gene expression and protein turnover may take tens of
minutes in bacteria to several hours in metazoans.

Even under steady external conditions, cells can display complicated dynam-
ics. For instance, many well-known biological phenomena are periodic, such as
the cell cycle and the circadian rhythm. Dedicated protein interaction networks
maintain these oscillations and adjust progression depending on intracellular
cues, such as spindle formation or DNA replication. Compared to the time
scale of the cell cycle, which depending on the organism may range from 20
minutes to 24 hours in duration, many subnetworks are fast and may attain a
quasi-stationary state. This is for instance likely the case for yeast and human
glycolysis.
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Figure 1.6: Single-cell monitoring of oscillatory dynamics of doubly phosphory-
lated ERK in both the cytoplasm and the nucleus [31]. Panel A shows that the
total fluorescence increases upon addition of epidermal growth factor (EGF)
- the signal of the signaling network. This indicates activation. In addition,
ERKPP accumulates in the nucleus. On top this assumulation oscillations oc-
cur (panel B (numbers indicate minutes after EGF addition) and figure C). The
cells stained in red and the red data points indicate a control protein that only
resides in the nucleus. In earlier experiments this dynamics was hard to observe
as those often dealt with population studies. Then, oscillatory dynamics would
only have been spotted if the cells would oscillate in synchrony.

1.3.2 Cells and their networks are organized in space and
time!

Eukaryotic cells have intracellular compartments, organelles, that separate in-
ternal processes from the cytoplasm. Prokaryotes lack compartments but do
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show dynamics induced spatiotemporal organization. For instance, in the regu-
lation of the cell cycle where periodically varying gradients of signaling proteins
allow the cell to identify its poles and middle. In eukaryotes, gradient forma-
tion of signaling proteins is for instance used in the cell movement where the
cell needs to perform qualitatively different phenomena at its front and back.
Those locations are separated in space through a gradient of several signaling
molecules. This gradient is maintained by localized covalent modification re-
actions of signaling proteins and tightly interacts with the cell’s machinery to
extend its body forward and restructure its cytoskeleton.

Figure 1.7: Heterogeneity of the expression of a fluorescent protein in a popu-
lation of isogenic Escherichia coli cells [9].

1.3.3 Isogenic cells can display large cell-to-cell hetero-
geneity!

The introduction of fluorescent proteins and genetic engineering allow the ob-
servation of the dynamics of single cells. Cells with the same genetic make up -
so-called isogenic cells - with the same growth history and current environment
have been shown to display large cell-to-cell variability. An example of a snap-
shot of a population of isogenic cells expressing the same fluorescent protein in
shown in figure 1.7. Those cells differ remarkably in the level of this protein!
Representative distributions of fluorescence intensity across a cell population
of Saccharomyces cerevisiae (yeast) cells are shown in figure 1.8. Figure 1.10
shows the dynamics of the variability of a fluorescently-labelled mRNA for four
different E. coli cells. mRNA is produced in bursts of several molecules during
”on” and ”off” periods.
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Figure 1.8: Distribution of fluorescence intensity per cell as function of a gene
regulator [1].

Figure 1.9: Variability of mRNA levels per cell as function of time for four cells
[13].

1.3.4 Evolutionary network adaptations can be tracked
and predicted!

Cells in a population accumulate mutations that gradually or in large jumps
alter their physiological properties and fitness. Hereby some cells become by
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chance better adapted to the current environment and will have a growth bene-
fit. In this way, natural selection sieves better adapted mutants. By laboratory
micro-evolutionary experiments this evolution can be tracked over time and in
some cases theoretical predictions of optimal adaptation can be confirmed [19].
Mutations alter the properties of proteins and hereby whole network properties.
The benefits of particular regulatory mechanisms inside networks, such as feed-
back loops and specific kinetic parameters, can be experimentally verified using
this approach or by competition experiments of variants.

Figure 1.10: Adaptive evolution of E. coli growing on glycerol [19]. As function
of time the population reaches the red line of optimality (figs b-e) as predicted
by flux analysis of E.coli ’s metabolic network.
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1.3.5 Network principles exist that apply to many species!

As all organisms rely on molecular networks and use similar molecular regu-
latory mechanisms quite a few recurrent network designs have been identified
that are used by distinct species. Similar signal transduction cascades, patterns
of feedback and feedforward circuitry have been found. Negative feedback has
been shown to be important for fast responses, robustness and giving rise to os-
cillations. Positive feedback turns out to be important for discrete switching in
physiological states. Feedforward loops have shown to underlie sign-sensitive de-
lays and pulse generators. Similar concepts and principles underlie the activity
of networks with diverse functions in different species.

1.3.6 Predictive mathematical modeling of molecular net-
work dynamics is feasible!

Besides the development of models and theory for the illustration of qualitative
properties of networks to compare alternative network designs for their pros
and cons, detailed mathematical models of molecular networks can be devel-
oped. Those models are useful in medicine and biotechnology as they allow for
the prediction of systemic consequences of molecular perturbations. This fa-
cilitates metabolic engineering and drug target identification. Such approaches
rely on quantitative experimental data on system behavior and/or kinetic prop-
erties of the molecular components of the network. Such data allows for model
parameterization and validation prior to model usage as a predictive tool.

1.3.7 Foremost biology but also engineering, physics and
mathematics in SYSTEMS BIOLOGY!

The development of advanced and quantitative techniques for the monitoring
of the dynamics of molecular networks has shifted the emphasis in cell biol-
ogy from molecule to network. The growing realization that a molecule cen-
tered approaches to medicine and biotechnology are limited due to the intricate
functioning of molecular networks as molecular systems has made this shift an
important one. A systems perspective brings with it different questions and
challenges and requires usage of new techniques. Whereas many cell biologists
could do without approaches from engineering, physics and mathematics before
the network era, they are becoming more and more aware of the added benefit
of multidisciplinary approaches. In the chapters that follow some of the basics
for such a systems biology are explained.
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Chapter 2

Diffusion and reactions

2.1 Introduction

The association of proteins into complexes is a basic process in cell biology: it
is frequently occurring in signal transduction and gene expression regulation.
In metabolism it is not found often. There, most of the reactions are enzy-
matic conversions of low-molecular weight organic molecules, such as pyruvate,
glucose, amino acids, lipids, etc. Only when metabolic enzymes are covalently-
modified, e.g. by phosphorylation, does protein-protein association play a role.
Because protein-protein interactions are so prevalent, we will look into these
processes in a bit more detail. Often, we can estimate the association rate con-
stant for complex formation by considering the rate of this process as limited
by the diffusional search of the two proteins for each other. In other words, the
time that it takes before the complex is formed, i.e. the reaction time, which is
the sum of the diffusional search time plus the time to form the complex (after
the collision), is by more than 90% determined by the diffusional search time.
This means we have to understand how the diffusional search time depends on
properties of the proteins and the cytoplasm.

2.2 The intimate relationship between diffusion
and reactions

A cellular compartment, such as the cytoplasm of a cell or the interior of an
organelle, is a volume packed with (macro-) molecules. (Figure 2.1). It is often
said to be a crowded with macromolecules environment, because the average
distance between macromolecules is roughly the dimensions of a single macro-
molecule (average radius: ≈ 5 nm).

Cells contain numerous molecules of different types having different physic-
ochemical properties and functions. All of this makes the intracellular milieu
an environment difficult to mimic in vitro. This does not necessarily mean that

15
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Property Bacterium Eukaryotic cell
Cell volume 1 µm3 10000 µm3

Proteins/cell 4 · 106 4 · 1010

1 Protein/cell 1 nM 0.1 pM
Mean size of protein 5 nm 5 nm

Diffusion time of protein across cell 0.1 s (D=10 µm2/s) 100 s
Diffusion time of small molecule across cell 1 ms (D=103µm2/s) 0.1 s

Table 2.1: Properties (estimates) of a bacterium, such as E. coli, compared to
the properties of a mammalian cell (an eukaryote).

the in vivo milieu will be critical for all molecular properties but certainly for
some. Macromolecular crowding favors for instance the association of proteins.

It is instructive to envision cells as shown in Figure 2.1 but then with all
the molecules moving erratically. This mental picture and a number of other
physicochemical properties of molecules and cells will turn out to be useful in
understanding the fundamental basis of molecular reactions. This is the topic
of this chapter.

Table 2.1 summarizes some properties we will need throughout this chapter.

Exercise

1. The volume of E. coli is approximately 1 µm3.

(a) Calculate the concentration of one molecule per cell in nM .

(b) How many (spherical) receptors fit in the membrane of E. coli if the
diameter of a receptor is 10 nm? Assume E. coli to be spherical; in
reality, it is cigar shaped in most growth conditions.

(c) How many macromolecules of similar dimensions as the receptors
would fit in E. coli ’s cytoplasm?

2. All nutrients need to be transported over the membrane. This means that
the total transport capacity depends on total membrane area. Show that
it is advantageous for a spherical cell to be small. What would determine
the minimal cell size? Take into consideration that a cell with an increased
volume would have to more protein to keep all the protein concentrations
homeostatic.

2.2.1 Diffusion of molecules precedes their reactive colli-
sions

Molecules inside cells engage in all kinds of molecular processes. Molecules have
to be in close enough proximity and in the right relative orientation for a reac-
tion to take place. Molecules find each other mostly through diffusion. Some
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!
Figure 2.1: An impression of a segment of a bacterium’s membrane,
cytoplasm and flagellum with realistic relative dimensions: an en-
vironment crowded with macromolecules. In vacuum, these molecules
would be moving really fast, with speeds of approximately v =

√
kT/m (with

k as Boltzmann’s constant, T as temperature in Kelvin, and m as mass) in
all three spatial dimensions. This means that at 27 degrees Celcius, an aver-
age protein with molecular weight 1.4 · 104 g/mol moves at 1.3 · 103 cm/sec!
However, this considers the enzyme in a vacuum. In reality, it is emerged in
a crowded aqueous environment where the motion is better described with a
diffusion coefficient as we shall see below. The particle is continuously bumping
(exchanging momentum) with the molecules in its vicinity. This leads to an er-
ratic motion of the particle with very small jumps (of the size of the mean free
path), a so-called random walk or drunken mans walk (see below). The mean
free path for a macromolecule, is roughly the radius of the macromolecule: this
is how packed - crowded - cells are!

molecules are transported by cargo proteins, such as dynein. They carry macro-
molecules or vesicles along the cytoskeleton to particular intracellular locations.
But most protein diffuse through the cell’s interior in three dimensions.

Diffusion is a ”blind” processes, molecules move as a drunken man walks, as
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they are bumping into other molecules (including water) all the time (Figure
2.2).

Figure 2.2: Examples of four 2D random walks of 10000 diffusive steps.
The start position is indicated with a rate dot. The net distance travelled is
given by

√
dNδ2 for a random walk of N diffusive steps of size δ in dimension

d. The net distance travelled is the square root of the length of the diffusion
trajectory. Because molecules change their direction of movement all the time,
due to collisions, their travelled distance is much shorter than the length of the
diffusion trajectory. Consider a drunken man. If he travels 1 m per step and
has to walk 100 m in distance then he will likely have taken much more than
100 steps when he has reached his destination because he does not walk to the
target point in a straight line.

We will now relate the diffusion of molecules with the reaction rate of as-
sociation. The rate equation that describes the rate of an association reaction
between two molecules A and B, i.e. A+B → AB, is given by k ·a · b. Here AB
denotes the stable complex. The rate constant k is a second-order rate constant
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and a realistic unit is mM−1min−1. Before the molecules A and B have formed
the stable complex AB, two processes have to occur: i. the molecules have to
bump into each other while they are each diffusing, and ii. after the collision
they have to find the right relative orientation to form a stable complex; or, if
the orientation does not matter, they just to form the stable complex. Thus the
association rate k · a · b depends on: (i) the number of their diffusive collisions
per time unit and (ii) the fraction of collisions that lead to complex formation.
This means that the time takes it for a complex to form, i.e. the association
time, is the sum of the diffusion time plus the stable complex formation time.
In the next section, we will consider the diffusion time.

2.3 Diffusion of molecules

Diffusive motion (without drift) is unbiased in direction. A molecule moving in
one dimension at a particular location along an x-axis has probability 1/2 to
move to the right and probability 1/2 to move to the left. In 3D, at an instant
of a diffusive step, the particle moves in the + or − direction of the x, y, and z
axes; it moves diagonally. Examples are shown in Figure 2.2.

To get some insight into the statistics of diffusing molecules, we will consider
1D diffusion. Many of its properties can easily transferred to higher dimensions.
Consider a molecule that has had sufficient time to make N diffusive steps, nL
to the left and nR (= N − nL) steps to the right. The probability to travel nL
steps to the left out of N is given by the binomial distribution,

p(N,nL) =
(

N
nL

)
pnL(1− p)N−nL (2.1)

This equation should look familiar from your elementary probability classes.
It is a discrete probability distribution (a so-called probability mass function),
which just means that nL can only be chosen from 0,1,2,3,... . The probability
p corresponds to the probability to move to the left and 1− p is the probability
to move to the right. For normal diffusion those probabilities equal 1/2. It is
instructive to plot this equation as function of nL at different values for N and
p to get some intuition.

The mean and variance of a binomial distribution are Np and Np(1 − p).
This means that on average Np = 0.5N steps are taken to the left and therefore
the same number of steps to the right. Thus on average the molecules do not
move! This does not describe the process completely however. Over time, i.e.
when the number of diffusive steps N increases, some molecules will of course
have moved a longer distance. Since, always some molecules will exist that have
had most of their steps to the left (or the right) the distribution of molecules
will become broader over time. This is captured by the variance, which is a
measured for the spread of the molecules over the medium or the width of the
binomial distribution, because the variance increases with the number of steps
N . If this sounds puzzling to you then imagine a drop of blue dye in the middle
of the petri dish filled with water. Over time, the dye will diffusive out of the
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centre to the edge of the dish. While this happens, the blueness will become
less because the number of molecules at one location on the dish (the centre for
instance) reduces. How the blue color spreads over the petri dish is described
by the binomial distribution for different values of N .

When we consider movement to the right relative to the origin as a positive
distance, the travelled distance ∆ equals nR − nL. Often we are interested in
situations where the number of diffusive steps is large such that N and Np are
large. Under those conditions, a binomial distribution can approximated by a
continuous Gaussian distribution; which is sometimes called a normal distribu-
tion or a bell curve (see: figure 2.3). The probability for a molecule to move
distance d after time t then obeys the following Gaussian distribution,1

p(∆, t) =
1√

4πDt
e
−∆2
4Dt (2.2)

Here we have defined time as t = Nτ and the diffusion coefficient as D =
δ2/(2τ) with τ and δ as the (average) time and distance per one diffusion step,
respectively. Note that the unit of a diffusion coefficient is a bit peculiar, e.g.
µm2/s (because it equals δ2/(2τ)), this will become clear at the moment. The
spread of the probability as prescribed by this equation is shown in figure 2.3.
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Figure 2.3: Examples of the probability density (equation 2.2) at three different
times (3·10−3, 15·10−3 and 75·10−3 seconds; the diffusion coefficient corresponds
to a realistic value (10 µm2/s). The radius of an E. coli cell is about 1µm.

One result should not surprise you by now given the unbiased nature of the
random walk; the mean travelled distance, denoted by 〈∆〉, is zero. When we

1The notation for a mean or average of a stochastic variable x is 〈x〉. If x is a discrete
variable and it comes in n values, i.e. x1, ..., xi, ..., xn then 〈x〉 =

Pn
i xi · p(xi) with p(xi) as

the probability for xi. One can envision p(xi) as given by number of occurrences of xi in a
large enough sample of x. In physics such a sample is called an ensemble. If x is a continuous
variable with bounds xL and xH then 〈x〉 =

R xH
xL

x · p(x)dx. Here p(x) is defined as the

continuous probability distribution for x.
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calculate this we get,2

〈∆〉 =
∫ ∞

−∞
∆ · p(∆, t)d∆ = 0 (2.3)

In the previous example, with the binomial distribution, we found that the
spread of the distribution increases with the number of steps N , which was a
proxy for time. Intuitively this is in agreement with the slow spreading of the
blue dye in a petri dish. This is spreading we can quantify again with the The
results that we will use most often relates the travelled distance to the diffusion
coefficient through the variance of ∆, denoted by 〈δ∆2〉,

〈δ∆2〉 =
∫ ∞

−∞
∆2 · p(∆, t)d∆− 〈∆〉2 = 〈∆2〉 − 〈∆〉2 = 2Dt (2.4)

(Note that
∫∞
−∞ p(∆, t)d∆ = 1, the probability that a molecule has travelled any

distance equals 1.) 〈δ∆2〉 is often referred to as the mean squared displacement
or, simply, the variance. The units of this measure is distance squared, e.g. µm2.
When we speak of the travelled distance, we should then consider

√
〈δ∆2〉 such

that the units make sense.
√
〈δ∆2〉 is of course the standard deviation of the

Gaussian distribution we are considering.
The probability that a particle has moved farther than

√
〈∆2〉 after time t

is given by,

P (∆ >
√

2Dt, t) = 1−
∫ √2Dt

−
√

2Dt

P (∆, t)d∆ = 0.32 (≈ 1/3) (2.5)

This last result shows the applicability of equation 2.4 as it can be used to
assess the minimal distance that 1/3 of an ensemble of molecules with diffusion
coefficient D has moved after time t. The probability for molecules to move
farther than twice the root mean square displacement in distance is 0.045. In
other words, 95% of all the molecules will not have moved further than 2

√
〈∆2〉

in distance after t time for diffusion.
To extend the previous 1D result to three dimensions, we use the additivity

rule for variances: as the diffusive motion in the x, y and z dimension are
independent we can sum the variances such that,

〈∆2〉 = 〈∆2
x〉+ 〈∆2

y〉+ 〈∆2
z〉 = 6Dt (2.6)

This amounts to the following conclusion: a molecule with a diffusion coefficient
D has travelled a distance farther than

√
6Dt with probability 1/3 after time

t or, equivalently, 2/3 of the molecules have travelled less than that distance.
This is a useful relationship as it tells you something about how fast proteins
move inside cells. This sets a limit to the rate of association reactions! Because
the association of two proteins can of course not be faster than their diffusion
speed.

2How to perform these calculations you do not need to know at this stage of the course.
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With this knowledge we can address problems related to the duration of
diffusive phenomena. For instance, considering that the diffusion coefficient of
green fluorescent protein (GFP) is 25 µm2/s in mammalian cytoplasm (in water
87 µm2/s and in bacterial cytoplasm 7.7 µm2/s) it can travel in 10 s a distance
of
√

6 ∗ 25 ∗ 10 = 38 µm. The length of E. coli is about 1 µm so this means a
single molecule travels the length of E. coli in about 12/(6 ∗ 7.7) = 0.02 s on
average! Below we will shall see that the diffusive searches of molecules to find
another molecule in E. coli or a regulatory site on the DNA will take orders of
magnitudes longer, in fact 10s of seconds.

So far, we have defined the diffusion coefficient of a particle in terms of the
stochastic properties of its random walk. But intuitively, this parameter should
depend on the size of the molecule (big things move slower), the viscosity of the
medium (consider maple syrup versus water, diffusion in syrup is slower), and
the temperature (molecules move quicker at higher temperatures). The physic-
ochemical properties of the particle influence the diffusion coefficient according
to the following (Einstein-Smoluchowski) relation,

D =
kT

f
(2.7)

With k as the Boltzmann constant (J/K; kg m2s−2K−1), T as the absolute
temperature (K) and f as the friction drag coefficient. For a spherical particle,
f equals 6πηa with η as the (dynamic) viscosity (kg m−1s−1) and a as the
radius of the particle (e.g., m); therefore,

D =
kT

6πηa
(2.8)

Exercise

1. Diffusion of GFP

(a) Plot the diffusion coefficient as function of the radius of a spherical
particle. Take 30◦C and express this temperature in units Kelvin.

(b) Double the temperature and make the same plot.

(c) How quick does GFP travel the radius of E. coli at 15◦C and 30◦C?

(d) Suppose we consider a dimer of GFP what happens to these search
times?

2. What do you think kT means? (Check its units).

3. What is the unit of f? What do you think this quantity means?

4. The dimension of an average macromolecule is 5 nM in diameter. Calcu-
late the diffusion coefficient using η = 10−3Pa s and kT = 4 ∗ 10−21 J . Is
this a realistic value?
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Figure 2.4: Diffusion times for a single molecule to find the membrane
(Dobrzynski and Bruggeman, unpublished), a molecule in the mem-
brane (from inside and outside) [32, 2], to travel a certain distance
d, and to find a (diffusing) molecule in the cytosol [14]. The D, DA,
and DB denote a diffusion coefficient (in µm2/s), Rcell the cell radius, Rr the
reaction radius (often the sum of the radii of the reacting molecules), k∗on the
reaction-limited rate constant, and Vcell the cellular volume. A typical cell ra-
dius is 1 µm for a prokaryote, a diffusion coefficient is typically 5 µm2/s and
a radius of a molecule is roughly 2.5 nm. All these diffusion times hold for
single molecules, i.e. one molecule diffusing in the cytosol to find another single
molecule in the membrane or in the cytosol. To take the reduction in time into
account when multiple molecules are diffusing the search times can simply be
divided by the number of molecules, so to find one receptor out of NR with
NC cytosolic proteins reduces the time by NCNR or if NT transcription factors
search for a single non-diffusing promotor on the DNA the search time becomes
Vcell/(4πRrDTNT ) with DT as the diffusion coefficient of the transcription fac-
tor.

2.4 Diffusion-limited reactions

We are now ready to make the leap from diffusion to reactions. We consider
two molecules A and B (with radii rA and rB , and diffusion coefficient DA
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and DB , resp.) that form a complex AB with a second-order rate constant ka
(molecules−1 s−1). The rate of the reaction is given by v = ka · a · b. Given 1
molecule of A and B a characteristic time for this reaction is 1/ka. This time τa
is the sum of a diffusion time τd and a reaction time τr. The diffusion (collision)
time is given by the Smoluchowski equation (Figure 2.4),

τd =
V

4π(DA +DB)(rA + rB))
(2.9)

(Check what the units are. You have to realize that this is the time for two
single molecules to find each other.) So the total time for the reaction is given
by,

τ = 1/ka = τd + τr =
V

4π(DA +DB)(rA + rB)
+ 1/kr (2.10)

If 1/ka ≈ τd then the reaction is said to be diffusion limited and the rate constant
for association becomes,

ka =
4π(DA +DB)(rA + rB)

V
(2.11)

Note that the unit of this equation is (molecule/Vcell)−1s−1. This equation was
first derived by Smoluchowski and represents the simplest expression for this
type of rate constant. With D in cm2/s and radius in cm multiplication of
the latter equation by Avogadros number and division by 1000 gives the rate
constant in M−1s−1.

If the reaction is reaction limited then ka ≈ kr and only the processes that
occur after A and B have encountered each other determine the reaction time.
This may have to do with finding the proper relative orientation or molecular
state. In principle, this rate constant can be understood in terms of intramolec-
ular dynamics using quantum mechanics (albeit, only in principle at the mo-
ment) or, more phenomenologically, with Eyrings rate theory, but this will not
be considered here.

Exercises

1. Can a second-order rate constant be higher than the diffusion limit?

2. Use the diffusion-limited second order rate constant relationship to esti-
mate the binding of the lac repressor to its DNA target site in M−1s−1.
The diffusion coefficient of the receptor is 5 ∗ 10−7cm2/s. The average ra-
dius of the receptor is 40 ∗ 10−10m and that of the DNA site 10 ∗ 10−10m.

2.5 Single molecule location searches in the cy-
tosol

Equation 2.9 expresses the time for two single molecules A and B, to find each
other in a cellular compartment given their radius and diffusion coefficients.
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Let’s look at the rate of association a bit more carefully,

v = ka
na
V

nb
V
≈ 1
τd

na
V

nb
V

=
V

4π(DA +DB)(rA + rB)
na
V

nb
V

(2.12)

The unit of rate is now number of molecules V −1s−1. Clearly, if we have only
one molecule of A and one of B the association rate is ka and it takes then
1/ka seconds between associations (on average). The search time (association
time) reduces with the number of molecules as τd/(na/V · nb/V ). Here na and
nb denote the number of molecules of A and B per cell. Let’s convert the
association rate is more a familiar unit, i.e. concentration per time,

v = NAka
na
NAV

nb
NAV

(2.13)

Here NA equals Avogadro’s constant (number of molecules per mol). na

NAV
and

nb

NAV
now equal the concentration of A and B in mol/liter. The rate v is now in

mol/(liter · second), and NAka is concentration−1s−1. NAka is the association
rate constant we have been using in previous chapters.

2.6 Different kinds of single-molecule searches

Many more search times, besides the time for two molecules in the cytosol to
encounter each other, are relevant in cell biology. All those times can be used to
estimate rate constants that we can use in kinetic models. Other expressions for
search times are shown in figure 2.4. All these times, scale inversely proportional
with molecule numbers. For instance, as the time to hit the membrane involves
a single molecule the corresponding time scales as τ/n with the number of
molecules per cell, n. The time to hit a molecule in the membrane involves
two molecules and will scale as τ/(n1n2). This makes sense because the rate
of reactions increase with the substrate concentrations and, hence, the time
between association events then needs to become shorter.

Let’s study these equations a bit closer. The ratio over the time to find a
molecule in the membrane versus the time to hit the membrane starting from a
random position in the cytosol equals,

time to find a molecule in the membrane
time to find the membrane

= 5π
Rcell
Rr

(2.14)

This ratio is about 8000 for E.coli and increases linearly with the dimension of
the cell. For a eukaryotic cell this ratio is about 8 ∗ 105. The time to find a
molecule in the membrane divided by the time to find a molecule in the cytosol
gives,

time to find a molecule in the membrane
time to find a molecule in the cytosol

= 8π (2.15)

The time to find a molecule in the membrane is always shorter than the time
for finding a molecule in the cytosol, which continues to surprise me.
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Exercise

1. Study Figure 2.4 and calculate the different times for a molecule to find the
membrane, a single molecule in the membrane, a single moving molecule in
the cytosol and to traverse the radius of the cell. Take E. coli parameters
for these calculations. How how much longer do these processes take for
a bigger cell with 1000 times the radius of E. coli.

2. Calculate the rate of complex formation between a cytosolic signaling pro-
tein and a membrane receptor when their concentrations are 300 and a
1000 molecules per cell, respectively. Those are realistic molecule num-
bers. Assume this rate to be diffusion limited. This process occurs in
a eukaryote with cell radius of 80 µm. If a single complex exists for 30
seconds what is the dissociation rate constant. After some time, the asso-
ciation and dissociation process have reached equilibrium. In equilibrium
the rates of association and dissociation are the same. What is the fraction
of the receptor that is in a complex in equilibrium?

3. Can an average reaction time be shorter than an average diffusion time?

4. Prokaryotic signal transduction often takes place by way of two-component
signal transduction. The fastest response time of such a signaling network,
in the diffusion limit, is given by the sum of the time for the response
regulator (RR; often a transcription factor) to find an active membrane
sensor to become activated by phosphotransfer and the time for the active
response regulator to find the DNA target site. This time can be approx-
imated by (with NRR and NRE as the number of response regulators and
receptors (membrane sensors)) respectively,

τr =
1

NRR

(
Vcell

4DRRRr
· 1
NRE

+
Vcell

4πDRRRr

)
. (2.16)

Explain the structure of this equation by studying Figure 2.4 and it’s
legend. Take representative parameters for E.coli and calculate the re-
sponse time for 25 sensor and 25 response regulator molecules. Is this
a fast time? (The time to transcribe a gene and translate the resulting
mRNA into protein takes about one minute.) Keep the total number of
sensor and response regulator molecules fixed at 50 per cell. Plot the re-
sponse time as function of the fraction of response regulators. Is there
a bias towards having more response regulators than sensors? Can you
explain why this is the case? Can you find the analytical expression for
the optimal number of response regulators to minimize the response time
given a fixed total number of molecules? If you can then plot the minimal
response time and the optimal number of response regulators as function
of the total number of signaling molecules (change this from 5 to 100).
Is having 100 signaling molecules much better than having 50? Is having
50 signaling molecules much better than having 10? How many molecules
would be enough for the system? You should realize that at some total
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number of molecules, having more molecules will reduce the time so little
such that the cost for protein synthesis exceeds the benefit of having one
more signaling molecule.

5. A mammalian cell has typically a dimension of 10000 µm3. Assume such
a cell to have 25000 androgen receptors, which are transcription factors
which upon binding androgen can regulate gene expression. Calculate
the cellular concentration of this receptor. The diffusion coefficient of
an androgen receptor is 2 µm2/s. Calculate the time it takes for the
androgen receptor to travel the radius of the cell (assume the cell to be
spherical). The androgen receptor has a diameter of about 10 nm (assume
it to be spherical) how many receptors fit inside the cell? Assume that
the nucleus takes up 10% of the cell volume and that the nucleus and the
cell are spherical. Androgen receptors typically reside in the cytosol when
they are not bound to androgen. When active they can move through the
nuclear pore complex to enter the nucleus and exit the cytosol. Say a cell
has 10000 pore complexes. What is the diffusion-limited rate constant for
transport from the cytosol to the nucleus? When androgen receptors are
in the nucleus they have to find their targets on the DNA, say there are
500 of such targets, which are 10 nm in dimension. How much time does
it take for a single receptor to find one of those targets when it starts in
the nucleus and when it starts in the cytosol? The androgen receptor sits
on the DNA for 50 seconds. What is the dissociation constant?
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Chapter 3

Kinetic description of
reactions between molecules

3.1 Reactions between molecules are the basic
processes of life

To understand how the molecules inside cells bring about cellular behavior re-
quires understanding of signaling, metabolism, and gene expression in molecular
terms. Typically, tens to hundreds of proteins are involved in those cellular ac-
tivities. Those proteins may act as enzymes and catalyze reactions or may have
constructive role, for instance, actin plays a role as a monomer in the cytoskele-
ton, nucleosomes wrap DNA, or proteins making up a flagellum (the propellor
that microorganisms use to move through fluids). In this chapter, we will study
how we can quantitatively understand how the reactions between molecules, e.g.
proteins, underlie changes in the concentrations of these molecules - dynamics.
We will limit ourselves to uncatalyzed reactions and postpone enzyme kinetics
to a later chapter.

3.2 The quantitative description of molecular re-
actions: mass-action kinetics

We will assume throughout this chapter that we can describe reactions between
molecules without having to consider diffusion of molecules and stochastic as-
pects of reactions. Diffusion will be discussed shortly in the next chapter.

What kind of reactions exist between molecules? Well, two molecules can
associate and form a complex. Alternatively, molecules can fall apart. In both
cases, the concentrations of the substrates and the products of the reaction have
changed after the occurrence of the reaction. How fast those concentrations
changes depend on the rate of the reaction. If multiple reactions occur the

29
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change in the concentration of a specific molecule depends on the net synthesis
rate and the net degradation rate of this molecule. This means that if we account
for the rate of all reactions that a given molecules plays a role in, as substrate
or product, we can determine the change in the concentration of this molecule.
This resembles molecular accounting. A natural approach to accounting is to
make us of balances - as you do when managing your bank account. Here
we done deal with the amount of money but with numbers of molecules, e.g.
expressed as a concentration.

Thus, setting up a mass balance resembles molecular accounting and the
same principles apply as when you manage your bank account. You keep track
of the number of molecules (analogue: ”euros” or ”dollars”) produced and con-
sumed of a given species (analogue: ”currency”), and the difference between
those rates gives the net rate of change in the concentration of the molecule
at a given moment in time. Let’s write this down in mathematical terms. We
consider a molecule, X, with concentration, x, which is for instance expressed
in terms of mM. The rate of change in the concentration of this molecule X is
denoted by dx/dt. One can think of dx/dt as the slope in a figure where the
concentration x is plotted as function of time, t. If at a certain moment in time
dx/dt is positive then the concentration rises, if it is negative the concentration
drops and if is zero the concentration remains constant. The value of dx/dt
at a certain time t equals the difference between the net rates of synthesis and
degradation, vsynth(t) and vdeg(t), of this molecule X with concentration x,

d

dt
x(t) = vsynth(t)− vdeg(t) =

∑

i

vi,synth(t)−
∑

j

vj,deg(t) (3.1)

For every variable molecule concentration in the system of interest such an equa-
tion can be defined. Here we have explicitly indicated that the concentration
and the reaction rates depend on time but we will often omit this notation. The
symbol

∑
means that we take a sum of values; for instance,

1 + 2 + 3 + 4 + 5 =
5∑

i=1

i

y1 + y2 + y3 + y4 + y5 =
5∑

i=1

yi

Therefore,
∑
i vi,synth(t) means the sum of all the synthesis rates of X at time

t. For the moment we will assume that we only have a single synthesis and
degradation rate. If we choose concentration units in mM and time units in
minutes, the units of rates are defined. The units of the two rates then neces-
sarily have to be mM/min as the units at the right and left hand side of the
equation always have to match. The two rates can depend on concentrations of
other molecules in addition to X. The rate equations are given by either mass
action or enzyme kinetics. Mass action kinetics will be studied in this section
and enzyme kinetics in the next chapter.
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Mass action kinetics applies to uncatalyzed reactions. Setting up a rate
equation for a reaction involves very intuitive rules. For instance, for the iso-
merization reaction, s 
 x, the net rate of synthesis of X depends on the
concentration of s, x, and its intrinsic rate constant for isomerization, k+ and
a similar rate constant for the isomerization of x, i.e. the backward reaction,

v = k+s− k−x (3.2)

If the unit of the reaction is expressed in terms of mM/min the unit of the
concentration needs to mM and the unit of the rate constants are min−1. The
reversibility of the reaction dictates that the rate can also be negative, i.e. then
S produced from X. The terms k+s and k−x are referred to as the forward and
the backward rate of the reaction. The rate constants k+ and k− are sometimes
called elementary rate constants. They are first-order rate constants because
the rate depend to first-order on the concentration, i.e. on x and not on x2.

Now suppose that the molecules X and Y for a complex: X + Y 
 XY .
The rate of the reaction is now described by,

v = k+ · x · y − k−xy (3.3)

The unit of the rate constant k+ should now be min−1mM−1. This rate con-
stant is an example of a second-order rate constant, as its associated elementary
rate depends on the concentration to second order, i.e. x·y. Following this logic:
a third order rate constant is then involved in X + Y + Z 
 XY Z.

For the reaction, X +X 
 X2, we would obtain for the rate of synthesis of
the complex the following rate equation,

v = k+x2 − k−x2 (3.4)

The dissociation rate is given by −v.
Some of you may have spotted the logic be now: in general, we obtain for

reactions such as,

n1X1 + n2X2 + ...+ nsXs 
 m1Y1 +m2Y2 + ...+mpYp (3.5)

the following rate equation for the reaction,

v = k+
s∏

i

xni
i − k−

p∏

j

y
mj

j (3.6)

The symbol
∏

means product,

1 · 2 · 3 · 4 · 5 =
5∏

i=1

i

Z1 · Z2 · Z3 · Z4 · Z5 =
5∏

i=1

Zi

(3.7)
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Returning to equation 3.6, this means that per unit time m1v molecules of Y1

are made, and miv molecules of Yi.
There is one more thing to remember. Whenever a molecule is consumed

or produced multiple times in a single reaction, such as 2X 
 X2, then the
’2’ in front of X is called a stoichiometry coefficient and needs to be taken into
account in the mass balance for x. This is easy to understand as per unit rate
more than molecule of x is consumed. We would get in this case,

dx

dt
= −2(k+x2 − k−x2) = −2v

dx2

dt
= k+x2 − k−x2 = v

as two molecules of x are consumed per unit rate, which occurs at speed v =
k+x2 − k−x2. Here the rate is defined as the association rate. In addition,
the total amount of molecules of X remains fixed in this case: no molecules
are lost only interconverted. Thus we have the following relationship for the
total concentration of X: xT = x + 2x2. This means that the consumption
rate of x equals twice the production rate of x2: thus 0 = dx/dt+ 2dx2/dt and
−dx/dt = 2dx2/dt and this is true because dx/dt+ 2dx2/dt = −2v + 2v!

Exercises

1. Determine the mass balances and mass action kinetics for the following
molecules and reactions. An underlined molecule indicates that it has a
fixed concentration.

(a) S 
 X 
 P

(b) S 
 X 
 P

(c) 3A 
 2B + C, B 
 2D , 2C 
 3E

(d) XY + Z 
 XY Z, XY Z 
 X + Y Z, Y Z 
 Y + Z

2. Determine from these sets of mass balances the reactions,

(a) de
dt = −k+

1 e · s+ k−1 es+ k+
2 es− k−2 e · p, desdt = k+

1 e · s− k−1 es− k+
2 es+

k−2 e · p, dsdt = −k+
1 e · s+ k−1 es,

dp
dt = k+

2 es− k−2 e · p
(b) dx

dt = k+
1 a · x2 − k−1 x3 − k+

2 x+ k−2 b

(c) dx
dt = k+

1 a− k−1 x+ k3x
2 · y, dydt = k2b− k3x

2 · y

(d) dx
dt = v1−v2, dydt = v2−v3, dzdt = 4v3−v1−v2−v4 This is fact a simpli-
fied representation of glycolysis with X glucose-6p, Y as fructose1,6-
phophate and Z as ATP. What is should be the substrate of reaction
1 and the product of reaction 3?
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3.3 Rate characteristics, thermodynamic equi-
librium and steady state

In the previous section, we have learned how to set up mass balances and rate
equations for processes following mass action kinetics. This is the first step in
making a kinetic model of a molecular network. These models are very useful
to study basic properties of molecular systems that have to do with their dy-
namics, their control, and the importance of individual molecules and reactions
for system behavior. Those models are central to this book.

Let’s analyze the kinetic model of the following system, composed out of two
reversible reactions and one variable intermediate X,

S 
 X 
 P (3.8)

Remember that the underline of S and P indicates that their concentrations
are kept fixed. We are therefore only dealing with a single mass balance. If we
assume the rates to follow mass action kinetics, we arrive at,

dx

dt
= k+

1 s− k−1 x︸ ︷︷ ︸
v1

− (k+
2 x− k−2 p)︸ ︷︷ ︸

v2

(3.9)

Both of the rates of the processes depend on the concentration of molecule X,
denoted by x. For a given concentration x these rates have a certain value
and depending on their difference x may rise or fall, steeply or only slightly.
Alternatively, the rate balance and x remains fixed. This is shown in Figure 3.1
where the rate characteristics of this system is displayed. A rate characteristic
is a plot of rates as function of the concentration of a single molecular reactant.

The two lines in Figure 3.1 depict the rates of the reactions as function of
x. When x equals 0 the rate of reaction 1 equals k+

1 s and −k−2 p for reaction 2.
The two rates equal zero at different concentration of x; reaction 1 at k+

1 s/k
−
1

and 2 at k−2 p/k
+
1 . This you can conclude by setting each of the rates of zero

and solving for x.
Suppose you supply an initial amount of x slightly larger than the inter-

section of the rate characteristic of the first reaction with the x-axis. At that
concentration of X, v2 > v1 and the concentration of X will decrease because
dX/dt < 0. The rate with which x decreases becomes smaller as it approaches
the intersection between the two rate curves because dX/dt gets smaller. This
allows a sketch of the dynamics of X, in a plot of the X as function of time:
it reduces from its initial concentration to its value at the intersection between
the two rate characteristics. When the two rates eventually become equal, X is
given by,

xS =
k+
1 s+ k−2 p

k−1 + k+
2

(3.10)

This equation was obtained by setting the mass balance for x to zero, and
solving for its stationary concentration xs. This stationary state is referred
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k+
1 S

−k−2 P

v

X

k+
1 S

k−1

0

k−2 P

k+
2

k+
1 S + k−2 P

k−1 + k+
2

v1

v2

Figure 3.1: Rate characteristics of the reaction s 
 x 
 p with reversible mass
action kinetics.

to as a steady state. The system will reach this steady state from any initial
concentration for molecule X. Do you understand why? (This can be concluded
from the rate characteristic.) A steady state is defined as the stationary state
in which at least one of the reactions is unequal to zero. A stationary state
means that all the mass balances equal zero, which in this example will always
correspond to the state reached after some time.

The previous expression for the steady-state concentration of X depends
on the complete description of the system, all the kinetic constants and the
characterization of the environment, the concentrations of S and P . The pro-
found consequence is that already in this simple and biologically too simplistic
example the entire system description determines system properties. It is not
one molecule or process that is most important, but they all contribute! This
fundamental property of molecular systems, i.e. their nonlinear nature and de-
pendence on all molecular properties, makes biology so complicated and forces
us to use mathematics and physics to better understand biology! Only the ini-
tial condition does not matter for the steady-state concentration of X. In a next
chapter, we will study cases where stationary states do depend on the initial
condition.

If we would consider the rate characteristics of the system, S 
 X, the only
feasible stationary state is a state where the net rate of reaction equals zero.
Such a state is called a state of thermodynamic equilibrium. Its relation to
thermodynamics will become clear later.

Note that the stationary state in Figure 3.1 can become a state of ther-
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modynamic equilibrium when the values of s or p are chosen appropriately.
Thermodynamic equilibrium will be the final state if P/S is chosen equal to,

p

s
=
k+
1 k

+
2

k−1 k
−
2

(3.11)

Only for this concentration ratio of P over S are the rates v1 and v2 both equal
to zero in the state where x is constant.

You should realize that the rate constants, the ’k’s’, are properties of the
reactants and the reaction conditions. An experimentalist can therefore only
change the stationary rate by altering s or p.

Exercise

1. Sketch the dynamics of X as function of time on the basis of the rate
characteristic; take k+

1 = 5, k−1 = 1, k+
2 = 3, k−2 = 2. Show that equation

3.11 indeed causes the system to settle to an equilibrium state where all
reactions rate equal zero. Show that X then has the same stationary
concentration as for the system s 
 x. Show that the time to reach
half the steady-state concentration is halved when all rate constants are
doubled in value.

2. Plot the rate characteristic for dx/dt = v1−v2 with v1 = 1/(1+x) and v2 =
x/(1 + x). For which concentration of X does v1 equals v2. Is this state,
a steady state or an equilibrium state? What happens to x as function
of time if the initial concentration of x lies below the concentration of X
where v1 = v2? And what if it lies above this value?

3. Plot the rate characteristic for dx/dt = v1 − v2 with v1 = 1/(1 + x)
and v2 = V2x/(1 + x) for different values of V2 what happens to the
concentration of x where v1 = v2? Does it increase or decrease? Why?
How would you call the kinetic parameter V2?

4. Consider the following reactions A 
 B,B 
 C,C 
 D. All these
reactions follow reversible mass-action kinetics. Express the concentration
ratio of D over A such that the system reaches thermodynamic equilibrium
in terms of the rate constants of the reactions.

5. Do the same for:
A 
 B,B 
 C,B 
 D

3.4 Binding equilibria, association and dissocia-
tion constants

Complex formation between molecules is a fundamental process. It occurs in
signaling where proteins dock onto receptors, in transcription where transcrip-
tion factors bind to DNA, and in molecular machines, such as the ribosome,
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where multiple protein together carry out a task. Binding events are often
quantified in terms of a dissociation constant, which is a very useful parameter
to assess the concentration of the proteins where a significant fraction of the
protein exists in a complexed form.

Consider protein A and B, for instance a G-protein and a membrane recep-
tor, that can form a complex,

A+B 
 AB (3.12)

One of the relevant questions to ask is: what is the fraction of the molecules
of A that exists in the complex? When is it 10%? When is it 90%? We will
first assume that B is in excess. This means we only have to deal with the
conservation of A molecules: aT = a + ab. This equation tells you that if you
start with 100 molecules of A in total that over time this amount will not change.
This means that we can write for the mass balance of A,

da

dt
= k−1 (aT − a)− k+

1 a · b (3.13)

And this you can solve for the equilibrium concentrations using the information
of the last section. Here we will achieve the same outcome but in a different
manner. In the equilibrium state, the association rate and dissociate rate are
equal and the total amount of A is fixed,

k+
1 a · b = k−1 ab

aT = a+ ab

We can eliminate ab to obtain,

aT = a+
k+
1 a · b
k−1

= a

(
1 +

b

KD

)
(3.14)

Here we have defined the dissociation constant KD, which equals k−1 /k
+
1 . This

means that unbound concentration of A equals,

a =
aT

1 + b
KD

(3.15)

With the definition of the dissociation constant we can rewrite the equilibrium
condition k−1 ab = k+

1 a · b as ab = a · b/KD and we obtain for the bound concen-
tration of A,

ab =
aT

b
KD

1 + b
KD

(3.16)

The bound fraction is then ab/aT . The dissociation constant has unit concen-
tration. It indicates the concentration of b where the 50% of the molecules of A
are in the complex because when b = KD the concentration ab equals aT /2. So
the measurement of the dissociation constant is useful exercise. Sometimes the
association constant is considered, which is defined as 1/KD.
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Exercise

1. Plot ab as function of b. What type of relationship do you find? What is
the ratio of b/KD where 10% and 90% of A is in the complex?

2. The KD of a transcription factor for a DNA binding site is 1 nM . What
is the concentration of the transcription factor such that bound fraction
of binding sites is by 10%, 50% and 90%?

3. Consider the following reactions:

A+B 
 AB

A+AB 
 A2B

Define a KD for the first reaction and the second reaction. Do you un-
derstand that those can indeed be different? Assume again that the total
concentration of B is fixed and that A is in excess. Use the same proce-
dure as explained in the last section to determine the expression of a2b in
terms of b, aT , KD1 and KD2.

4. The same as the previous question but now for:

A+B 
 AB

A+AB 
 A2B

A+A2B 
 A3B (3.17)

(a) At what concentration of A is 50% of B in the A3B complex?

(b) At what concentration of A is 50% of B in the A2B complex?

(c) What is then the fraction of B in the AB and the A3B complex?

3.5 A number of biological examples

3.5.1 Protein complex formation (different perspective)

The formation of macromolecular complexes composed out of multiple proteins
is a recurrent phenomenon in signal transduction and gene expression. Let’s
consider the case where two proteins, A and B, form a complex,

A+B 
 AB (3.18)

Both proteins now occur in a free form and in the complex. The forward rate
constant is a second order rate constant. Let’s consider, for simplicity, that
B is in excess, such that ab << b. This means that the free concentration of
the B, remains effectively constant, i.e. the free concentration equals the total
concentration, b ≈ bT . Thus, we are dealing with,

A+B 
 AB (3.19)
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As the total amount of A, denoted by aT , is distributed over a and ab, we only
have to consider the following mass balance,

dab

dt
= k+(aT − ab)b− k−ab (3.20)

This is a linear ordinary differential equation, as it depends on ab in a linear
manner. As a consequence, it can be solved analytically by hand or by using,
for instance, Mathematica,

ab(t) =
(

1− e−(k+b+k−)t
)
ab(∞) =

(
1− 1

e(k+b+k−)t

)
ab(∞) (3.21)

Here ab(∞) equal the complex concentration at infinity, respectively. We as-
sumed that that the initial concentration of AB equals 0. The term 1/e(k

+b+k−)t

converges to zero when time becomes large enough. This means that the ap-
proach to the equilibrium state can be sped up when any of the kinetic terms in
or the concentration b in k+b+ k− is increased. At time t1/2 = ln(2)/(kb + bkf )
the concentration of ab equals half the equilibrium concentration. This defi-
nition of half-time is sometimes used as a measure for the characteristic time
of the equilibration process. The state of thermodynamic equilibrium that is
finally reached, when time goes to infinity, obeys two equations,

ab(∞)
a(∞) · b =

k+

k−

aT = a(∞) + ab(∞) (3.22)

The first equation derives from the stationarity condition for the mass balance
and the second expresses the conservation of the amount of molecule a. When
we solve this for the complex concentration, we obtain

ab(∞) = abEQ =
aT · b
KD + b

(3.23)

Here we have defined the dissociation constant KD as k+/k−. This constant
will have as its unit concentration, which you can verify easily. The stationary
concentration of the complex increases in a hyperbolic fashion with the concen-
tration of molecule b, B.

The characteristic life time of the complex is given by the time constant,
1/k−; indeed with time as its unit. This constant tells you how a complex lives
on average before it dissociates.

Exercise

We consider the binding of a transcription factor, A, to a DNA site, B. Assume
that the experimentally determined value for the dissociation constant is 1 nM .
This is a characteristic affinity for regulatory sites on the DNA. Determine the
life time of the transcription factor DNA complex when the association rate
constant is diffusion limited and equals 1 nM−1s−1 Assume 10 transcription
factors and 1 DNA site per cell and take E. coli ’s cell volume (1 fl).
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3.5.2 Cooperative transcription factor binding to DNA
targets

A B

A B A B

A B
1

23

4

Figure 3.2: A state diagram of a gene promotor regulated by a transcription
factor, the red ball. Two sites are present on the DNA, A and B.

We shall now consider the case of two transcription factors binding to two
regulatory sites in the promotor region of a target gene. Those transcription
factors are repressors and compete for binding with the RNA polymerase, which
we do not consider here. As the activity of the gene depends on whether 0, 1, or 2
transcription factors are bound, we have to determine the fraction of promotors
in these states. We assume the transcription factor, TF , to be in excess. We
have to deal with four reactions,

P + TF 
 PTF

P + TF 
 TFP

PTF + TF 
 TFPTF

TFP + TF 
 TFPTF

and one moiety conservation relationship that relates concentrations, expressing
the fact that we have a fixed finite amount of promotors,

pT = p+ tfp+ ptf + tfptf (3.24)

At the stationary state, all those reactions will be in thermodynamic equi-
librium. We can express the concentration of the product of each reaction in
terms of the substrate concentration and a dissociation constant,

ptf =
p · tf
K1

tfp =
p · tf
K2

tfptf =
p · tf2

αK1K2

Here the α factor is an interaction coefficient that captures the effect of the
presence of one transcription factor on the DNA when the next one binds.
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So the affinity of the DNA for the second transcription factor is altered when
one transcription factor is already present. This cooperativity derives from a
physical interaction of the transcription factors or a modulation of the DNA
conformation upon binding of the first transcription factor.

These equations yield for the free concentration of the promotor,

p =
pT

1 + tf
K1

+ tf
K2

+ tf2

αK1K2

(3.25)

and for the fully occupied promotor concentration,

tfptf =
pT

tf2

αK1K2

1 + tf
K1

+ tf
K2

+ tf2

αK1K2

(3.26)

The relationship between the final complex concentration and the free con-
centrations of the two sites and the transcription factor should depend on the
path travelled through the mechanism. So whether the complex was formed
through a transcription factor first binding on the first site or on the second site
should have no influence on the eventual equilibrium reached. This condition is
called microscopic reversibility. Show that this condition is only met when the
value of the interaction coefficients, α, is fixed; it does not depend on whether
the first or the second site was occupied first by a transcription factor.

Exercise

Consider the previous section.

1. How are the dissociation constants defined in terms of rate constants?

2. Why do we need to introduce the α when the regulatory sites are different
or when the transcription factor can interact on the DNA?

3. Make the derivation for tfptf (equation 3.26) yourself.

4. Plot the concentration of tfptf as function of the transcription factor
concentration. Investigate the influence of K1, K2, and α.

5. What does K1 < K2 indicate?

6. What does α < 1 indicate?

3.5.3 Negative autoregulation of a gene

Some transcription factors display autoregulatory behavior: they regulate their
own expression by modulating the transcription rate of their own gene. Gene
autoregulation is found very often. An example of a such a gene network is
shown in Figure 3.3. The synthesis of mRNA corresponds to transcription and
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that of protein to translation. Both the mRNA and transcription factor are
degraded. The mass balances for this system then follow,

dmRNA

dt
=

ksm
1 + TFn

− kdmmRNA
dTF

dt
= kstfmRNA− kdtfTF (3.27)

The first mass balance consider transcription and turnover of mRNA. The sec-
ond mass balance concerns translation and protein degradation. Note, it is
instructive to plot the transcription rate term of mRNA as function of TF
and investigate the effect of n and ksm. This gives you some insight into the
dependency of autoregulation of transcription on the transcription factor con-
centration.

At steady state, when dmRNA/dt = 0 and dTF/dt = 0, the mRNA con-
centration is a solution of,

0 =
ksm

1 +
(
kstfmRNAS

kdtf

)n − kdmmRNAS (3.28)

(Derive this equation yourself while reading.) This equation shows that an
increase in mRNA will have a inhibiting effect on its synthesis rate. The gene
functions like a homeostat, it’s product is actively suppressing changes in its
steady-state mRNA product level!

From the previous equation, we obtain,

ksm = kdmmRNAS +
(
kstf
kdtf

)n
kdmmRNAS

n+1 (3.29)

If we assume that (kstf/kdtf )nkdmmRNASn+1 >> kdmmRNAS , we find for
mRNA concentration at steady state,

mRNAS =
(
ksm
kdm

) 1
n+1

(
kdtf
kstf

) n
n+1

(3.30)

This equation shows that any change in the transcription rate, ksm, is dampened
by the negative feedback. The strength of the feedback increases with n. This
can be easily investigated by determining the following sensitivity coefficient,

∂mRNA

∂ksm

ksm
mRNA

=
∂ lnmRNA
∂ ln ksm

=
1

1 + n
(3.31)

This equation indicated that a 1% change in the transcription rate, due to some
other factor not modeled here, will give rise to 1/(n+1)% change in the steady-
state mRNA level. So, strong feedback, i.e. large n will reduce the sensitivity of
the mRNA concentration to change in the transcription rate constant, ksm; for
instance, due to the effect of other regulators. The same holds for a change in
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kdm. Higher values of n makes the system gradually more sensitive to change
in kstf and kdtf ,

∂ lnmRNA
∂ ln kstf

=
∂ lnmRNA
∂ ln kdtf

=
n

1 + n
(3.32)

This sensitivity ranges between 0.5 and 1.

mRNA

TF

- +

Figure 3.3: A transcription factor encoding gene that is inhibited by its own
protein product.

Another aspect of negative autoregulation is that it speeds up the response
of genes. This can be understood when we consider the following mass balance,

dmRNA

dt
=

ksm

1 +
(
kstfmRNA

kdtf

)n − kdmmRNA (3.33)

This mass balance may appear a bit artificial as mRNA generally does not
influence transcription directly. Here we assumed that the protein dynamics
is so fast relative to mRNA that it can be assumed in a stationary state on
the time scale of mRNA dynamics. Thus, dTF/dt = 0 is always practically
zero even though mRNA levels are still changing drastically. If we want to
understand the consequences of the negative autoregulation we should compare
this description to the case without autoregulation. In order to do this properly
we will require the steady state mRNA level of the two descriptions to match.
You should realize that this also forces the steady state mRNA rate (J) to be
equal between the two models. At steady state we find for the two descriptions,

ksm

1 +
(
kstfmRNA

kdtf

)n = kdmmRNA = J

ksm = kdmmRNA = J (3.34)

In order for the feedback to be operative, (kstfmRNA/kdtf )n > 1, which means
that the steady states of the two descriptions can only be identical if the tran-
scription rate constant ksm is larger for the network with the autoregulation.
This implies that in the absence of any mRNA, the system with the negative
feedback will response faster to a sudden increase in transcription activity!

Exercises

1. Kinase and phosphatase cycles occur very often in mammalian signaling
networks (Figure 1.5). The kinase catalyzes the following reaction: E +
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ATP 
 EP +ADP and the phosphatase does the reverse: EP 
 E+P .
Assume the kinase and phosphatase to follow simple Michaelis Menten
kinetics, v = VMAXS/(S + Km) with S as the substrate concentration -
E for the kinase and EP for the phosphatase -, VMAX as the maximal
enzyme rate and KM as the Michaelis-Menten (half-saturation) affinity
constant. We neglect the concentrations of ATP , ADP and P . The total
concentration of enzyme substrate will remain fixed, i.e. E+EP = ETOT ,
as there is no net synthesis or degradation of this enzyme.

(a) Plot the rate of the kinase and phosphatase reaction as function of
the concentration of EP (which varies between 0 and ETOT ; take
K ′Ms and VMAX equal to 1 and Etot = 1). You can use Excel,
any other plotting package, Matlab or Mathematica. Show that the
intersection of the kinase and phosphatase rate is a stable steady
state.

(b) Assume that the VMAX of the kinase increases linearly with a signal
concentration L, i.e. VMAX,kinase = kcatL (take kcat as one and vary
L from 0.1 to 10 in steps of 1. Plot the steady state concentration of
EP as function of L for ETOT = 1 and 10.

(c) Explain why the curve of EP as function of L becomes more switch-
like when ETOT increases. This mechanism for high-signal-sensitivity
is called zero-order ultrasensitivity. We will return to this phenomenon
later.

2. Consider the following reactions,

a+ 2x 
 3x
x 
 b

The concentration of a and b are fixed.

(a) Determine the mass balance for the concentration of x, denoted by
X. Take A = 1, B = 1, k+

1 = 10, k−1 = 1, k+
2 = 10 and k−2 = 2 and

plot dX/dt as function of X.

(b) Count the number of intersections with the X-axis. Explain what
happens to X when dX/dt is positive and negative.

(c) Show that you can identify two regions for the initial concentrations
for x that each lead to different steady state concentrations of x.

(d) Conclude that depending on the initial conditions, the history of
the system, the system can reach different steady states. This phe-
nomenon is called bistability. This phenomenon will be studied later
in more depth.
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Chapter 4

Enzyme kinetics

4.1 Enzymes

Most reactions inside cells are catalyzed by enzymes, few reactions occur sponta-
neously. Metabolism, signal transduction, and gene transcription are all depen-
dent on the actions of enzymes. By using enzymes, cells have control over what
happens as they can modulate their levels and activities. Enzymes can only
speed up reactions. They cannot alter the equilibrium constant of reactions.
In their catalytic site, enzymes offer a favorable physicochemical environment
for the reaction chemistry to occur. An enzyme may besides its catalytic site
have regulatory sites, allosteric sites, that affect the kinetic properties through
intramolecular signaling. Enzyme kinetics can be derived from a mass-action
description of the elementary reactions involved in the enzyme mechanism, pos-
sibly under the influence of effectors. In this chapter, some of the basic concepts
of enzymology will be explained. This chapter lies at the basis of the study of
the dynamics and control of signaling, metabolic, and gene networks.

4.2 Irreversible Michaelis-Menten kinetics

The study of enzyme kinetics, enzymology, is a large field with many details.
Many of these details and tricks can be found in this chapter. In this section, all
the concepts and tricks contained in this chapter will be applied to the simplest
enzyme mechanism that one can think of. Reading this section carefully will
prepare you for what is to come and facilitates the reading of the next sections.
Focussing only on the essential of these sections suffices.

In this section, we will consider a classical enzyme mechanism:

E + S
v1

 ES

v2→ E + P (4.1)

This description refers to a mass-action kinetics description of the two reactions

45
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that occur,

v1 = k+
1 e · s− k−1 es

v2 = k2es (4.2)

We would like to derive the rate of this reaction in terms of the familiar
relationship used in biochemistry, called the Michaelis-Menten equation,

v = VMAX
s

KM + s
(4.3)

This equation relates the rates of the reaction, the number of products produced
per unit time, to the concentration s of the substrate and two kinetic properties
of the enzyme, i.e. the maximal enzyme rate VMAX and the Michaelis-Menten or
affinity constant of the enzyme for S denoted by KM . This equation prescribes
a hyperbolic relationship between v and s with v = 1/2VMAX at s = KM and
v → VMAX when s >> KM . When v ≈ VMAX , it is said that the enzyme is
saturated.

However, we do not know yet how the kinetic constants VMAX and KM are
related to the elementary rate constant k+

1 , k−1 and k2. This is what enzyme
kinetics is all about. It can be done in two ways: by a quasi-steady state
assumption and an equilibrium-binding assumption. These are explained in the
next two subsections and used later for more complicated kinetics.

4.2.1 Derivation of enzyme kinetics: quasi-steady state
assumption

The total amount of enzyme stays constant: eT = e+ es. We assume that the
substrate is in excess over enzyme, s >> eT . This means that we are effectively
considering,

E + S
v1

 ES

v2→ E + P (4.4)

(S means S is fixed.) We then have the following two balances for the enzyme
species,

de

dt
= −(k+

1 e · s− k−1 es) + k2es

des

dt
= (k+

1 e · s− k−1 es)− k2es (4.5)

Because the total amount of enzyme is fixed we obtain −de/dt = des/dt; this
indicates that for every free enzyme consumed an enzyme-substrate complex
is produced. The quasi-steady state assumption means that we assume that
de
dt = 0 and des

dt = 0 while S is in excess and P is being produced. Then,

0 = −(k+
1 e · s− k−1 es) + k2es

0 = k+
1 e · s− k−1 es− k2es (4.6)
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These equation allows us to solve for the (quasi-) steady state concentrations of
e and es. Since, e = eT − es we can write the last equation solely in terms of
es,

0 = k+
1 (eT − es) · s− k−1 es− k2es

= k+
1 eT · s− k+

1 es · s− k−1 es− k2es

= k+
1 eT · s− es(k+

1 s+ k−1 + k2)⇒

es =
k+
1 eT · s

k+
1 s+ k−1 + k2

=
eT

k+
1

k−1 +k2
· s

k+
1

k−1 +k2
s+ 1

(4.7)

The rate of the enzyme under quasi-steady state conditions equals v = v1 =
v2 = k2es,

v = k2es

= k2eT

k+
1

k−1 +k2
· s

k+
1

k−1 +k2
s+ 1

= VMAX

s
KM

s
KM

+ 1
= VMAX

s

s+KM
(4.8)

Here the maximal rate of the enzyme, VMAX , is defined as k2eT and the
Michaelis-Menten constant as KM = k−1 +k2

k+
1

.

Exercise

1. Determine the change in the substrate concentration when the enzyme
rate changes from 10% to 90% of the maximal value.

2. Describe the quasi-steady state assumption in your own words.

4.2.2 Derivation of enzyme kinetics: equilibrium-binding
assumption

Also for the equilibrium-binding assumption the substrate level is assumed fixed,

E + S
v1

 ES

v2→ E + P (4.9)

Instead of assuming a steady state for the concentrations of the enzyme species
while S is converted into P it is now assumed that reaction 1 is in thermody-
namic equilibrium; then,

k+
1 e · s = k−1 es⇒ e =

k−1
k+
1

es

s
= KS

es

s
(4.10)
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The KS is now a dissociation constant. Using the relation for the conservation
of total enzyme we can solve for the equilibrium concentration of es,

eT = e+ es = es

(
KS

s
+ 1
)
⇒

es =
eT

KS

s + 1
=

eT
s
KS

s
KS

+ 1
=

eT s

s+KS
(4.11)

Again the rate of the enzyme equals v = v2 = k2es and therefore,

v = k2eT
s

s+KS
= VMAX

s

s+KS
(4.12)

The VMAX has the same definition as previously with the quasi-steady state
approximation. The difference is in the definition of the Michaelis-Menten con-
stant. As Michaelis and Menten defined the constant as KM under the quasi-
steady state condition, the derivation under the equilibrium-binding assumption
should strictly not use the term Michaelis-Menten constant and the notation
KM . This is why we called it KS in this section. Except for this minor differ-
ence the outcomes of the two derivations are exactly the same. Differences will
appear between these two approaches when multiple substrates and products
are considered.

Exercise

Which assumption is the most unrealistic the quasi-steady state or the equilibrium-
binding assumption?

4.2.3 Consideration of inhibitors and activators: equilibrium-
binding assumption

A pragmatic approach to the action of inhibitors and activators suggests that
effectors of enzyme catalyzed reaction can influence the VMAX and/or the KM

(or KS). Hereby, the fluxes through an entire metabolic pathway can be effected
because of the influence of the regulated enzyme on the pathway behavior. Thus,
enzyme inhibition and activation is method to modulate pathway activity. By
definition, an effector (i.e. inhibitor or activator) is not consumed by the enzyme,
it only binds to the enzyme to change the enzyme properties.

In the presence of an effector, say ”X”, we have the following possible enzyme
states,

eT = e+ ex+ es+ esx (4.13)

Using, mass-action kinetics and equilibrium binding for X to the enzyme we
can write the last equation as (you should know this by now),

eT = e

(
1 +

x

K1

)
+ es

(
1 +

x

K2

)
(4.14)
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We will next assume that S is in excess, X is an inhibitor, that ex and esx are
dead-ends in the enzyme mechanism (conversion of ex into esx is prohibited),
and that e and es are in equilibrium: then,

eT = KS
es

s

(
1 +

x

K1

)
+ es

(
1 +

x

K2

)

= es

(
KS

s

(
1 +

x

K1

)
+
(

1 +
x

K2

))
⇒

es =
eT

KS

s

(
1 + x

K1

)
+
(

1 + x
K2

)

=
eT(

1 + x
K2

) 1
KS

s

1+ x
K1

1+ x
K2

+ 1

=
eT(

1 + x
K2

)
s
KS

1+ x
K2

1+ x
K1

s
KS

1+ x
K2

1+ x
K1

+ 1

=
eT(

1 + x
K2

)

s

KS

1+ x
K1

1+ x
K2

s

KS

1+ x
K1

1+ x
K2

+ 1
(4.15)

And the rate of the enzyme now becomes,

v =
k2eT(

1 + x
K2

)

s

KS

1+ x
K1

1+ x
K2

s

KS

1+ x
K1

1+ x
K2

+ 1

= V APPMAX

s
KAP P

S

s
KAP P

S

+ 1

= V APPMAX

s

s+KAPP
S

(4.16)

The last equation tells you that in the presence of inhibitor the VMAX and the
KS are modulated to new values V APPMAX and KAPP

S but that the dependency of
the enzyme rate on the substrate concentration remains hyperbolic.

4.2.4 Exercises

1. Derive the kinetics in the case that X cannot bind to ES but only to E.

2. Derive the kinetics in the case that X cannot bind to E but only to ES.

3. Compare the two equations that you have derived in the previous two
exercises.
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4. One of these mechanisms is called competitive inhibition. Which one do
you think and why?

5. What should be the concentration of X if I want to inhibit the enzyme by
50%, for the two mechanisms you have derived yourself (question 1 and
2)?

4.2.5 Sensitivity of the enzyme rate to reactants and ef-
fectors

We have now assumed that the enzyme consisted of one subunit, so a single
catalytic site per enzyme macromolecule. If an enzyme is composed out of
multiple subunits, such that it is a protein complex, the subunits within the en-
zyme can affect each other’s activities and sensitize and desensitize each other
for their substrates. This phenomenon is known as cooperativity. Essentially,
this means that the enzyme rate no longer depends on the substrate concentra-
tion in a hyperbolic fashion but that it displays a steeper dependence. This is
often approximated by the Hill equation,

v = VMAX
sn

Kn
S + sn

(4.17)

This equation is completely phenomenological as we shall see later but what
it does represent is an equation with greater sensitivity to the substrate con-
centration than a normal Michaelis-Menten type of relationship (when n = 1).
This is easy to see when you consider the fractional change in the reaction rate
upon a fractional change in the substrate concentration; i.e. the % change in
the reaction rate upon a 1% change in the substrate concentration, this is much
higher for enzymes with high values for n,

∂ ln v
∂ ln s

=
s

v

∂v

∂s
= n

Kn
S

Kn
S + Sn

(4.18)

So multi-subunit enzymes can become very sensitive to their reactants and ef-
fectors, which makes them potent regulating enzymes with metabolic pathways.
We will come back to this in a later section.

4.3 Reversible Michaelis-Menten kinetics

Monomeric enzymes have only one catalytic unit. We will consider enzymes with
multiple subunits in section 4.7. The simplest reversible enzyme mechanism
considers an enzyme, E, that converts a single substrate S into a single product
P ,

E + S
v1

 ES

v2

 EP

v3

 E + P (4.19)

All three reactions are considered reversible and described by mass-action kinet-
ics. ES and EP are often referred to as enzyme-substrate and enzyme-product
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complexes, respectively. Reactions with a single substrate and single product
are called uni-uni reactions; two substrates and a single product, bi-uni reac-
tions, etc. We denote concentrations by normal letters and names of species by
capitalized fonts.

The mass balances for all the species in mechanism 4.19 are given by,

ds

dt
= −v1 (4.20)

de

dt
= −v1 + v3

des

dt
= v1 − v2

dep

dt
= v2 − v3

dp

dt
= v3

To describe the entire process by a single rate equation, rather than by these
5 balances as it is now, we need additional assumptions for model reduction.
This is the main achievement of enzyme kinetics besides rigorous methods for
the determination of enzyme kinetic properties from experimental data. We
will consider two approaches for the derivation of enzyme kinetics. They both
have to do with differences in the dynamics of reactants and enzyme-reactant
complexes. We will start with quasi-steady state descriptions before we consider
equilibrium-binding models.

The net effect of the quasi-steady state assumption for enzyme kinetics is
that the differential equations that describe the mass balance for all the enzyme
species are set to zero and the concentration of the substrate and product are
considered as constants. This assumption amounts to assuming that S and P
have been added in such excess that any consumption or production of S and P
by the enzyme, during the time it takes for the enzyme to reach a state where
the concentration of the enzyme species no longer change, can be assumed not
to influence the concentration of S and P . This means that on the time-scale of
appreciable changes in S and P , it can be safely assumed that the concentrations
of the enzyme species to be given by the equations resulting from their mass-
balances set to zero. Accordingly, we are now left with the following set of
equations,

de

dt
= −v1 + v3 = 0

des

dt
= v1 − v2 = 0

dep

dt
= v2 − v3 = 0 (4.21)

There is one other equation to consider that captures the conservation of enzyme
species. As there is no net turnover of enzyme, we have,

etot = e+ es+ ep (4.22)



52 CHAPTER 4. ENZYME KINETICS

This equation can be checked to be true from equation 4.21 as,

de

dt
+
des

dt
+
dep

dt
= 0 (4.23)

The product formation rate we are interested in is given by,

v = dp/dt = v3 = k+
3 es− k−3 · e · p (4.24)

We are considering the enzyme at steady state: v1 = v2 = v3. We need to
determine the steady-state concentrations of the enzyme species, e and es, in
order to determine equation 4.24. As the equations in equation 4.21 are linearly
dependent - they obey equation 4.23 - we need to use the conservation of total
enzyme, equation 4.22, when solving for the enzyme species. This can be done by
hand (as was done in section 4.2) or by using a matrix approach. The matrix
approach is used here as this easily generalizes to more complicated enzyme
mechanisms. This is done as follows, first we write the rate equations in terms
of mass-action kinetics, substitute them in the mass balances, and write those
in matrix format and set them to zero,1



0
0
0


 =



−k+

1 s− k−3 p k−1 k+
3

k+
1 s −k1 − k+

2 k−2
1 1 1






e
es
ep


+




0
0
−etot


 (4.25)

Next, the concentrations of the enzyme species can be obtained through matrix
inversion, which is the same as solving this system of equations by hand (section
4.2) for the three enzyme species,




e
es
ep


 =



−k+

1 s− k−3 p k−1 k+
3

k+
1 s −k1 − k+

2 k−2
1 1 1



−1


0
0
−etot


 (4.26)

Mathematical software packages such as Mathematica or Maple can do this
matrix inversion for you. Substitution of the solutions for e and ep in equation
4.24 gives,

v

etot
=

num1︷ ︸︸ ︷
k+
1 k

+
2 k

+
3 s−

num2︷ ︸︸ ︷
k−1 k

−
2 k
−
3 p

k−1 k
−
2 + k−1 k

+
3 + k+

2 k
+
3︸ ︷︷ ︸

const

+ k+
1 (k−2 + k+

2 + k+
3 )︸ ︷︷ ︸

coefs

s+ k−3 (k−1 + k−2 + k+
2 )︸ ︷︷ ︸

coefp

p

(4.27)
Using the method worked out by Cleland [7], we have identified a number of
terms: num1, num2, const, coefs and coefp. Irregardless of the mechanism,
such a term identification can always be achieved [30]. The maximal rate of the
enzyme in the forward and the backward direction are defined as,

V +
MAX =

num1

coefs
(4.28)

V −MAX =
num2

coefp
1Do this yourself once to convince yourself that can to this.
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The half-saturation constants or Michaelis-Menten constants obey,

KMS =
const

coefs
(4.29)

KMP =
const

coefp

Substitution of these equations into 4.27 gives the reversible Michaelis-Menten
rate equation,

v =
V +
MAX

s
KMS

− V −MAX
p

KMP

1 + s
KMS

+ p
KMP

(4.30)

The product enters this equation in two ways in the denominator and numerator.
The denominator term is termed kinetic inhibition and the numerator term is
called thermodynamic inhibition.

In the absence of product, equation 4.30 simplifies into,

v = V +
MAX

s

s+KMS
(4.31)

A sketch of this curve is plotted in figure 4.1. A number of conditions clarify the
meaning of the terms in this equation and give rise to a number of frequently
used concepts,

1. If s >> KMS then v ≈ V +
MAX and the enzyme is said to be saturated. It

is no longer sensitive to the concentration of the substrate. The enzyme
operates in its zero order regime,

2. If s = KMS then v = V +
MAX/2. This defines the KMS as a half-saturation

constant,

3. If s << KMS the rate becomes v ≈ V +
MAX

KMS
s. The enzyme operates in its

first-order regime,

4. for symmetry reasons the same definitions apply to p when s = 0

Exercises

1. Consider equation 4.30 and set the concentration of the product to zero.
Why is the KS often called the half-saturation constant in this equation?
An enzyme that follows this rate equation is irreversible and product in-
dependent. For which concentrations of S is the rate most sensitive to the
concentration of S?

2. Plot the rate of an enzyme modelled with equation 4.30 as function of S
for constant values of P (0.25, 0.75, 1.5, 7.5) take a V +

MAX of 10 mM/min,
KS of 0.1mM , KP of 0.75mM , and an equilibrium constant of 1000. Find
the concentration of S where the enzyme is in thermodynamic equilibrium
and check equation 4.30.
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Figure 4.1: A sketch of the relative activity of an irreversible enzyme following
Michaelis-Menten kinetics (equation 4.31) as function of its normalized substrate
concentration.

3. Make a kinetic model of a reversible Michaelis-Menten enzyme in terms of
its elementary reactions. Compare this model to its corresponding enzyme
kinetics description and test whether the quasi-steady state approximation
indeed works under the conditions described in the text.

4. An ordered bi-uni reaction has two substrates (’bi’), which bind in a strict
order, and one product (’uni’). It has the following elementary reactions
in it’s catalytic mechanism,

e+ s1 
 es1

es1 + s2 
 es1s2

es1s2 
 ep

ep 
 e+ p (4.32)

Derive the rate equation of this reaction using the matrix method. Define
the KM ’s and VMAX ’s. Is the binding of s1 and s2 to the enzyme hindered
by the presence of p? Show that the synthesis of p reduces at higher levels
of p. Can a reduction in the rate of the enzyme, because of a decrease in
the concentration of s1, be compensated by a change in the concentration
of s2? At thermodynamic equilibrium the enzyme rate equals zero and
the ratio of the product concentration over the product of the substrate
concentrations equals the equilibrium constant of the reaction. This is a
definition. Express the equilibrium constant in terms of kinetic parameters
of the enzyme. This relationship is known as the Haldane relationship.
Do you think the equilibrium constant is a property of the enzyme or of
the reactants of the reaction?

5. Draw the cyclic catalytic network of an ordered bi-bi reaction without
mentioning a single species twice.
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4.4 Enzyme action and thermodynamics (advanced
material)

Enzymes can only enhance the rate of reactions. The equilibrium constant of
reactions cannot be altered by enzymes. The equilibrium constant of a reaction
derives from the thermodynamic properties of its reactants. According to tran-
sition state theory (figure 4.2) enzymes enhance the rate of reactions by offering
favorable conditions in their catalytic site. This lowers the activation energy of
the reaction such that it occurs more rapidly in the catalytic site of an enzyme
than spontaneously.2

Reactions taking place at constant temperature and pressure (the conditions
in the living cell) occur in the direction of a reduction of the (Gibbs) free energy
of a reaction. Thus, if the free energy of a certain amount of product is lower
than that of substrate the reaction will produce product spontaneously. The
reaction will stop when the free energy difference becomes zero. The reaction is
then in thermodynamic equilibrium, a state of maximal entropy. The (partial)
molar Gibbs free energy of a molecule A is given by,

µA = µ0′

A +RT ln a (4.33)

The unit of molar Gibbs free energy is J/mol, the universal gas constant R has
as it’s unit J/(mol·K), and temperature T is in Kelvin.3 The constant µ0′

A is the
molar Gibbs free energy (J/mol) defined under standard biochemical conditions
(concentrations are 1 molar, temperature 298 K, and pH is 7). The Gibbs free
energy potential of a reaction, ∆GR, is the difference in Gibbs free energy of the
products and the substrates taking into account their stoichiometric coefficients.
For the reaction 2A+B � A2B we obtain,

∆GR = µA2B − 2µA − µB = ∆G0′

R +RT ln
a2b

a2 · b (4.34)

(Here: G0′

R = µ0′

A2B
− 2µ0′

A − µ0′

B .) At thermodynamic equilibrium, the rate of
a reaction and it’s Gibbs free energy potential of the reaction are zero. At this
state, we obtain,

a2bEQ
(aEQ)2 · bEQ

= e
−∆G0′

R
RT ≡ KEQ (4.35)

In this equation, the equilibrium concentrations appear (subscript EQ) and the
equilibrium constant, KEQ. The actual ratio a2b

a2·b is defined as the mass action
ratio Γ. The deviation from thermodynamic equilibrium is captured by Γ/KEQ.
Indeed, using equation 4.34 and 4.35 we can write the Gibbs free energy potential
of the reaction as,

∆GR = RT ln
Γ

KEQ
(4.36)

2An analogy to activation energy is the requirement of a lighter to put wood on fire. Wood
will continue to burn spontaneously (wood ash has lower free energy) after it has been ignited.

3R = NAkB where NA is Avogadro’s constant and kB Boltzman’s constant.
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The last equation also equals RT ln v−/v+ where the rate of the reaction is
given by the difference between the forward and backward rate: v = v+− v− =
k+a2b− k−a2b.

We can rewrite equation 4.30 in terms of an equilibrium constant when
we realize that: i. the rate equals zero if the enzyme is at thermodynamic
equilibrium and ii. under those conditions, the mass action ratio equals the
equilibrium constant for the reaction; we obtain,

KEQ =
pEQ
sEQ

=
V −MAXKMS

V +
MAXKMP

(4.37)

This relationship is known as the Haldane relationship, which allows us to
rewrite equation 4.30 as,

v =
V +
MAX

s
KMS

(
1− p

sKEQ

)

1 + s
KMS

+ p
KMP

(4.38)

As the equilibrium constant is a property of the reactants, the enzyme kinetic
properties will always have to obey the Haldane relationship.
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Figure 4.2: A plot of the free energy of representative states for the reac-
tion of S to P as function of the reaction progression (reaction coordinate)
when the reaction is enzyme spontaneous (S � P , left) and enzyme-catalyzed
(E + S � ES � EP � E + P , right). In transition state theory, enzymes en-
hance the speed of reactions by lowering the activation energy for the reaction.
Enzymes achieves this by offering a favorable physicochemical environment for
the reaction chemistry in their catalytic site. The dGR = ∆GR = RT ln Γ/KEQ

is the same for the spontaneous and enzyme-catalyzed reaction.
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Exercises

1. Show that the equilibrium constant of a linear chain of enzymes equals the
product of the equilibrium constants of the reactions. Show for the same
system that the Gibbs free energy driving the system equals the sum of
the Gibbs free energies driving the reactions.

2. Consider a kinase and phosphatase catalyzing the phosphorylation of an
enzyme, E+ATP 
 ADP+EP , and its dephosphorylation EP 
 E+Pi,
respectively. Show that this system is driven by the free energy potential
of ATP 
 ADP + Pi when we consider those species fixed. Show that
only under those conditions a steady state can be reached. Show that at
thermodynamic equilibrium the regulation of a kinase by a signal does not
affect the concentration of EP and, therefore, no signal transmission can
occur.

3. Adenylate kinase (AK) is a studied enzyme in the regulation of the energy
balance in many organisms. It often operates at thermodynamic equilib-
rium. It catalyzes the following reaction: 2ADP 
 AMP + ATP . It
has as an equilibrium constant of 0.45. Why is this equilibrium constant
dimensionless? Calculate the concentrations of ADP, AMP, and ATP at
thermodynamic equilibrium when the initial conditions for ADP, AMP,
and ATP are: 2 mM, 3 mM, and 5 mM. What happens to the ratio
ATP/ADP when the total amount of adenosine and phosphate are inde-
pendently varied from 0.2 to 10 mM. Which of them has the largest effect
on this ratio?

4. Many enzymes in metabolism operate at close to thermodynamic equilib-
rium. Here we will study the kinetic requirements. Make a steady-state
kinetic model of a linear pathway with three enzymes, each modelled with
reversible Michaelis-Menten kinetics. Set the pathway substrate to 10 and
the product to 1. Choose the first and the last equilibrium constant as
1000. Set all the Km’s to 1 and Vmax’s to 10. In the first model, you set
the equilibrium constant of the second enzyme 1 and determine the Vmax
of this enzyme to have it operate 10% from thermodynamic equilibrium at
steady state by judging Γ/Keq. In the second model, set the equilibrium
constant to a 100 and determine again the value for the Vmax at which
the second enzyme operates 10% away from thermodynamic equilibrium.
What do you conclude? Test whether an enzyme close or far from equilib-
rium (10% or 90% away) has a larger or smaller effect on the steady-state
flux when its Vmax is perturbed?
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4.5 Enzyme inhibition: quasi-steady state ap-
proach

Enzymes are not only dependent on the concentrations of their reactants. Often,
their rates are modulated by the levels of concentrations that inhibit or activate
enzyme action. We can extent the mechanism underlying the Michaelis-Menten
kinetic rate equation with the action of an inhibitor as shown in figure 4.3.
The inhibitor can bind in principle to any of the enzyme species. At quasi-
steady state conditions, the reactions between the enzyme and inhibitor will be
in thermodynamic equilibrium. The conservation relationship for total enzyme
then becomes,

eT = e+ ei+ es+ esi+ ep+ epi

= e

(
1 +

i

Ki,4

)
+ es

(
1 +

i

Ki,5

)
+ ep

(
1 +

i

Ki,6

)
(4.39)

The Ki’s as now defined as dissociation constants with unit concentration, e.g.
mM . Using the matrix method outlined above we obtain the enzyme species
from,




e
es
ep


 =



−k+

1 s− k−3 p k−1 k+
3

k+
1 s −k1 − k+

2 k−2
1 + i

Ki,4
1 + i

Ki,5
1 + i

Ki,6



−1


0
0
−etot


 (4.40)

E+S↔ES↔EP↔E+P

↔

+

I

EI

↔

+

I

ESI

↔

+

I

EPI

1 2 3

4 5 6

Figure 4.3: General catalytic mechanism for inhibition of an uni-uni enzyme.
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The rate equation now corresponds to,

v

etot
=

num1s− num2p

const+ coefss+ coefpp

num1 = k+
1 k

+
2 k

+
3

num2 = k−1 k
−
2 k
−
3

const =
(

1 +
i

Ki,4

)
(k−1 k

−
2 + k−1 k

+
3 + k+

2 k
+
3 )

coefs =
(

1 +
i

Ki,5

)
k+
1 (k−2 + k+

2 + k+
3 )

coefp =
(

1 +
i

Ki,5

)
k−3 (k−1 + k−2 + k+

2 ) (4.41)

It is generally assumed that es and ep are indistinguishable and have the same
properties such that K5 = K6. Using the same definitions as in equations 4.29
and 4.30, the enzyme kinetic properties can be expressed in terms of the those
derived in the previous section,

V +,APP
MAX =

V +
MAX

1 + i
Ki,4

V −,APPMAX =
V −MAX

1 + i
Ki,4

KAPP
MS =

1 + i
Ki,4

1 + i
Ki,5

KMS

KAPP
MP =

1 + i
Ki,4

1 + i
Ki,5

KMP (4.42)

On the basis of these equations different forms of inhibition can be distinguished
as shown in Table 4.1. Competitive inhibition occurs when the substrate and
inhibitor can both bind in the catalytic site (K5 absent). Mixed inhibition is
when the inhibitor can compete with the substrate and bind also to the enzyme
when the substrate is bound. Noncompetitive inhibition is rare, it occurs when
K4 = K5. Uncompetitive inhibition is when the inhibitor can only bind to the
enzyme when the substrate is bound (K4 is absent).

Exercises

1. Is competitive or uncompetitive inhibition a more potent mechanism for
inhibition?

2. Make a kinetic model of a metabolic pathway with three enzymes each
catalyzing an uni-uni reaction. Make the first reaction irreversible and
product-independent. Choose the other two enzymes as reversible Michaelis-
Menten kinetics. Set the equilibrium constants to 100, all Km’s to 1, all
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Table 4.1: Different modes of inhibition.

type of inhibition V +,APP
MAX V +,APP

MAX /KAPP
MS KAPP

MS

Competitive (K5 absent) V +
MAX

V +
MAX/KMS

1+ i
Ki,4

KMS

(
1 + i

Ki,4

)

Mixed (K4 and K5) V +
MAX

1+ i
Ki,5

V +
MAX/KMS

1+ i
Ki,4

KMS

1+ i
Ki,4

1+ i
Ki,5

Pure noncompetitive (K4 = K5) V +
MAX

1+ i
Ki,5

V +
MAX/KMS

1+ i
Ki,4

KMS

Uncompetitive (K4 absent) V +
MAX

1+ i
Ki,5

V +
MAX/KMS

KMS

1+ i
Ki,5

V +
max to 100, the fixed pathway substrate to 10 and the fixed pathway

product to 1. Show that the steady-state flux through this pathway is only
sensitive to the enzyme level of the first enzyme and not to the second and
the third. Test this and explain why this occurs. Introduce competitive
inhibition of the first enzyme by the substrate of the third enzyme. Figure
out which enzyme level can change the steady-state flux most. Explain
your findings. Equip the same model with uncompetitive inhibition. Test
whether this inhibition is more potent inhibition mechanism. When do
you conclude one of the two mechanisms is more potent? Think carefully
about a fair comparison of the two models. Do you want the models to
have the same reference steady state and Ki for the inhibition?

4.6 Equilibrium binding models and convenience
kinetics

An alternative and much more straightforward approach than the quasi-steady
state approximation to deriving enzyme kinetics is by using equilibrium binding
models. The disadvantage is that they are more approximate but often they
result in rate equations that have nearly the same mathematical properties and
they are also in accordance with thermodynamics, as the quasi-steady state
approximation.

The simplest method to derive equilibrium binding models is to start from
the conservation equation of total enzyme. Let’s start with the simplest example
(see also equation 4.19),

E + S
v1

 ES

v2

 EP

v3

 E + P (4.43)

The enzyme conservation equation equals,

eT = e+ es+ ep (4.44)
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Reactions 1 and 3 are assumed to be in thermodynamic equilibrium and the
rate determining reaction is reaction 2. This assumption entails that reaction 1
and 3 are much faster than the conversion of es 
 ep. Using this assumption
we can equate the enzyme-reactant complexes in terms of the reactant and free
enzyme concentration through the definition of the dissociation constant,

eT = e

(
1 +

s

KS
+

p

KP

)
(4.45)

KS (is K1 = k+
1 /k

−
1 ) and KP (is K3 = k+

3 /k
−
3 ) are dissociation constants and

play the role of affinity constants in equilibrium binding models as we shall see
shortly. The rate of the reaction is given by,

v = k+
2 es− k−2 ep (4.46)

Using the dissociation constant definition and equation 4.45 we obtain for the
rate equation,

v =
V +
MAX

s
KS
− V −MAX

p
KP

1 + s
KS

+ p
KP

(4.47)

The maximal rates are now defined as V +
MAX = k+

2 eT and V −MAX = k−2 eT . This
equation has the same form as the reversible Michaelis-Menten equation but the
affinity constants have a different meaning!

The power of equilibrium models derives from its straightforward derivation
of multi-reactant rate equations. For instance, consider the enzyme mechanisms
shown in figure 4.4. For mechanism A, we have the following conservation
relation,

eT = e+ ea+ eb+ eab+ ep+ eq + epq (4.48)

and for mechanism B,

eT = e+ ae+ eb+ aeb+ aeq + pe+ eq + peb+ peq (4.49)

Using the equilbrium binding assumption we obtain for mechanism A,

eT = e

(
1 +

a

Ka
+

b

Kb
+

a · b
KaKb

+
p

Kp
+

q

Kq
+

p · q
KpKq

)
(4.50)

whereas for mechanism B the expression can be simplified to,

eT = e

(
1 +

a

Ka
+

p

Kp

)(
1 +

b

Kb
+

q

Kq

)
(4.51)

The last equation has a straightforward interpretation. Each term within brack-
ets corresponds to the saturation and competition characteristics of one binding
pocket. Pocket 1 can bind either be empty, bind A or P and pocket 2 can be
empty or bind B or Q. As the rate of reaction A equals v = k+eab− k−epq the
rate equation becomes,

v =
V +
MAX

a·b
KaKb

− V −MAX
p·q

KpKq

1 + a
Ka

+ b
Kb

+ a·b
KaKb

+ p
Kp

+ q
Kq

+ p·q
KpKq

(4.52)
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E EA

EB EAB EPQ

EP

EQ

E

k+

k−

E AE

EB AEB PEQ

PE

EQ

E

k+

k−

A.

B.

EQ AEQ EBPEB

Figure 4.4: Two catalytic mechanism for a two-substrate and two-product re-
action, a so-called bi-bi reaction. The equilibrium binding models will be dif-
ferent for the two mechanisms. Species that appear twice in the mechanisms
are coloured. A. The enzyme has a catalytic site where only substrates and
products can bind independently. B. The enzyme has a catalytic site where
there occurs competition for a two binding pocket; A competes with P for one
binding pocket and B with Q for the other. We assume here that the affinity
of the reactants does not depend on the identity of the reactant that is already
bound (or not) to the enzyme.

(With V +
MAX = k+eT and V −MAX = k−eT .) The rate equation for mechanism

B equals,

v =
V +
MAX

a·b
KaKb

− V −MAX
p·q

KpKq(
1 + a

Ka
+ p

Kp

)(
1 + b

Kb
+ q

Kq

) (4.53)

These equations have the same Haldane relationship,

KEQ =
pEQqEQ
aEQbEQ

=
V +
MAXKpKq

V −MAXKaKb

(4.54)

(The subscript EQ denotes equilibrium concentrations.) The numerator of both
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rate equations can expressed in terms of the equilibrium constant in the same
way as the reversible Michaelis-Menten equation as,

V +
MAX

a · b
KaKb

(
1− p · q

a · b ·KEQ

)
= V +

MAX

a · b
KaKb

(
1− Γ

KEQ

)
(4.55)

co

coso

ci

cisi

so si

DCS

DCS

DC

DC

k1- k1-
k1+ k1+

Figure 4.5: Mechanism for a membrane transporter acting as a facilitated dif-
fusion carrier. The transport solute occurs at the external cell side with con-
centration, so, where it binds the carrier, occurring at concentration, co. As the
carrier diffuses continuously through the membrane it sometimes occurs at the
intracellular side, at concentration cisi, where it can deposit the solute.

Exercises

In figure 4.5, an enzyme mechanism for a transporter is displayed. A molecule,
S, is transported from the external to the intracellular medium, with concen-
trations so and si, respectively. The binding reactions of the molecule to the
carrier at the extra- and intracellular side of the membrane are assumed to be
at equilibrium. The rate of the reaction is determined by the diffusion of the
carrier through the membrane. Given those assumptions write the rate equation
for the transporter in the following form,

v = Vmax

so

Km
− si

Km

1 + so

Km
+ so

Km
+Ki

siso

K2
m

(4.56)

and determine the constants Km, Ki and Vmax in terms of K1 = k−1 /k
+
1 , DC and

DCS . Study the effect of product inhibition, si, on the normalized uptake rate,
v/Vmax. Set s0 to 5 mM and Km to 1.19 mM . Those numbers are realistic
for yeast, which is known to have this transporter mechanism for its glucose
carrier. What is the role of Ki; when is the inhibition reduced and uptake
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rate high? Ki has been shown to equal 0.91 in yeast. Does this Ki facilitate
glucose uptake in yeast? Determine the equilibrium constant for this enzyme.
Study the conditions for high-sensitivity for the external level of solute and a
high maximal rate; equate the ratio Vmax/Km to do so. Take into account the
Haldane relationship.

4.7 Cooperative enzymes

4.7.1 The regulatory potential of cooperative enzymes

Enzymes composed out of multiple subunits are termed multimeric enzymes.
In the regulation of metabolism they play pivotal roles. Classical examples
in catabolism are pyruvate kinase and phosphofructokinase. In multimeric en-
zymes the subunits can be identical to each other or not. The presence of
multiple subunits introduces the possibility that the kinetics of one subunit de-
pends on the binding state of other subunits within the same enzyme. Such
multimeric enzymes are called cooperative enzymes or allosteric enzymes.

0 2 4 6 8 10
S/Km

0

0.2

0.4

0.6

0.8

1

v/
Vm

ax negative cooperativity

no cooperativity 
(Michaelis-Menten)

positive cooperativity

Figure 4.6: Cooperative enzymes and regulation. The saturation of three en-
zymes, v/VMAX (their normalized rates), is plotted as function of their normal-
ized substrate concentrations, S/KM . They differ markedly in their sensitivity
to the concentration of their substrate. The enzyme displaying positive cooper-
ativity is clearly most sensitive. The enzyme with negative cooperativity is least
sensitive to its substrate. A Michaelis-Menten enzyme, which has a hyperbolic
substrate-rate dependency, has intermediate sensitivity. A convenient definition
of sensitivity is reciprocal value of the concentration change required to change
the rate of an enzyme from 10% to 90% of saturation, v/VMAX .

Why are cooperative enzymes such good regulatory devices in metabolism?
This becomes apparent when we consider the sensitivity of a Michaelis-Menten
enzyme to its substrate. In figure 4.6 the rate of an enzyme following Michaelis-
Menten kinetics is plotted as function of the substrate concentration (the black
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line). An 81-fold change in the substrate concentration is required to change
the rate from 10% to 90% of its maximal value: we obtain from the Michaelis-
Menten equation,

sv/VMAX
= KM

v/VMAX

1− v/VMAX
(4.57)

Calculation of s0.9/s0.1 gives 81! A Michaelis-Menten enzyme needs an enor-
mous change in its substrate to have a 9-fold change in its flux. So it is very hard
to tune the rate of such an enzyme through regulation. In 1910, Hill studied
the oxygen binding kinetics of hemoglobine and found a sigmoidal saturation
curve, as the gray curve marked with positive cooperativity in figure 4.6. He
fitted the following phenomenological equation to this relationship, now known
as the Hill equation,

y =
xh

Kh
0.5 + xh

(4.58)

Here h is defined as the Hill coefficient and K0.5 as the value for x at which y
equals 0.5. If h = 1 this relationship is identical to a Michaelis-Menten function.
One should realize however that the Michaelis-Menten equation has a physical
basis and the Hill equation does not! The Hill equation however allows us to
define a sensitivity index (or cooperativity index). We use,

xv/VMAX
= KM

(
y

1− y

)1/h

to define the sensitivity index,

R =
x0.9

x0.1
= 811/h (4.59)

This equation indicates that if the Hill coefficient is 1 a 81-fold increase in x is
required increase y from 0.1 to 0.9, i.e. from 10 to 90% of the maximal output.
The Hill curve becomes sigmoidal when h > 1. Below we will learn that this
corresponds to positively cooperating subunits in a multi-subunit enzyme.

Enzymes that display positive cooperativity can have a heightened sensitivity
to reactants and effectors such that small changes in their concentrations bring
about large adjustments in the catalysis rate. This gives cooperative enzymes
their high regulatory potential. Large change in enzyme rate can occur due
to small changes in the concentrations of metabolites; the metabolites remain
nearly homeostatic despite a large rate change through their pools. Negative
cooperativity causes an enzyme to be very insensitive to metabolites, which is
another useful property.

4.7.2 The Monod Wyman Changeux model for coopera-
tive enzyme kinetics

In this section we will consider the model presented by Monod, Wyman, and
Changeux (MWC) in 1965. The MWC model assumes the multimeric enzyme
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Figure 4.7: MWC scheme

to be composed out of n identical subunits that can each be in a T (taut or
tight) state, which has a low affinity for the substrate S, or a R (relaxed) state,
which has a high affinity for the substrate. In addition, it is assumed that the
subunits are in equilibrium between their R and T state and that all subunits
change from R to T or from T to R in a concerted fashion (=at the same time).
The MWC model is sometimes referred to as the concerted-symmetry model.



4.7. COOPERATIVE ENZYMES 67

It is an equilibrium-binding model.

The model presented by Koshland & Nemethy [24] does not make the concerted-
symmetry assumption. It is therefore more general and, regretfully so, more
complicated. The MWC model as it was originally presented only considered
single substrate kinetics and an irreversible reaction. For reversible models, the
reader is referred to Hofmeyr & Cornish-Bowden [15] (see next section) and
Popova & Selkov [27].

The following reactions are considered in the MWC model,

T0
L

 R0

T0 + S
KT


 T1 R0 + S
KR


 R1

T1 + S
KT


 T2 R1 + S
KR


 R2

...
...

Tn−1 + S
KT


 Tn Rn−1 + S
KR


 Rn (4.60)

The dissociation constant is given above the reaction arrow and Tj and Rj
denote the oligomers with j of their n subunits bound to the substrate S. We
define the following kinetic constants,

α =
S

KR

L =
T0

R0

c =
KR

KT
(4.61)

The derivation of the MWC model can be illustrated nicely with an example
of a cooperative enzyme with four subunits (figure 4.7). The activity of the
enzyme is given by,

v = VMAX ·
concentration of all substrate bound subunits

concentration of all subunits

= VMAX ·
4(R1 + 3R2 + 3R3 +R4 + T1 + 3T2 + 3T3 + T4)

4(R0 +R1 + 3R2 + 3R3 +R4 + T0 + T1 + 3T2 + 3T3 + T4)

= VMAX ·
α+ 3α2 + 3α3 + α4 + αcL+ 3α2c2L+ 3α3c3L+ α4c4L

1 + α+ 3α2 + 3α3 + α4 + cL+ αcL+ 3α2c2L+ 3α3c3L+ α4c4L

=
α(1 + α)2 + αLc(1 + cα)2

(1 + α)3 + L(1 + cα)3
(4.62)
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In the general case, we then obtain,

v

VMAX
= fraction of subunits bound to S

=
total amount of subunits bound to S

total amount of subunits

=

amount of R states bound to S︷ ︸︸ ︷
α (1 + α)n−1 +

amount of T state bound to S︷ ︸︸ ︷
L · c · α (1 + c · α)n−1

(1 + α)n︸ ︷︷ ︸
total amount of R state

+ L · (1 + c · α)n︸ ︷︷ ︸
total amount of T state

(4.63)

The maximal rate of the enzyme equals VMAX = n·kcat,R ·eT . The difference
between the R and T state disappears if c = 1 and L = 1. If L = 0 or c = 1 the
equation simplifies to v = VMAXS

S+KR
.

An activator and inhibitor can be defined to have an effect of the L coefficient
as,

LAPP = L
(1 + β)n

(1 + γ)n
(4.64)

With γ = A/KA as the activator and β = I/KI as the inhibitor term. Com-
petitive inhibition can be expressed as,

v =
v

VMAX

α (1 + α+ β)n−1 + L · c · α (1 + c · α)n−1

(1 + α+ β)n + L · (1 + c · α)n
(4.65)

So far, we have assumed that the R and T state have the same VMAX . We
have only taken into account differences in substrate affinity. Such systems are
called V systems.

Exercises

1. Pyruvate kinase is a well-known cooperative enzyme in glycolysis of many
organisms following the MWC mechanism. It catalyzes the following re-
action phosphoenolpyruvate + ADP 
 ATP + pyruvate. Here we will
abbreviate phospoenolpyruvate as pep and pyruvate as pyr. In Escherichia
coli, the rate equation for this mechanism is,

v = VMAX

pep · adp
(
pep
Kpep

+ 1
)n

Kpep

(
L

(
1+ atp

Katp
fdp

Kfdp
+ amp

Kamp
+1

)n
+
(
pep
Kpep

+ 1
)n)

(adp+Kadp)

(4.66)
The kinetic parameters are: Kpep = 0.31 mM , Kadp = 0.26 mM , Kamp =
0.2 mM , Kfdp = 0.19 mM , Katp = 22.5 mM , L = 1000, and n = 4.
Physiological values for pep, atp, adp, amp and fdp are: 2.7, 4.2, 0.6, 1,
and 0.27 mM. Determine whether the regulatory influences of amp and
fdp are activating or inhibiting. Fdp is a glycolytic intermediate in the
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Figure 4.8: Illustrations of the consequence of cooperativity parameters on the
MWC rate equation (equation 4.63). In the upper, middle and lower plot, the
value of the c, L, and n parameter were changed, respectively.

upper part of glycolysis; it exert a feedforward regulation on pyruvate
kinase (see figure 1.1). Kamp was set to an arbitrary value. Determine
the effect of the chosen value on the rate equation of pyruvate kinase.

2. The intricate regulation of glycolysis and occurrence of the cooperative en-
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zyme, phosphofructokinase, pyruvate decarboxylase, and puryvate kinase,
inspired the analysis of kinetic models of glycolysis. A glycolysis model
was developed by Goldbeter and Lefever [12]. It was a simplified model of
glycolysis that illustrated the potential important role of product activa-
tion of phosphofructokinase (PFK) by ADP. PFK catalyzes the following
reaction: fructose − 6 − phosphate + ATP 
 ADP + fructose − 1, 6 −
bisphosphate. In figure 4.9 the network diagram of this model is shown.
Here γ indicates ADP and α, fructose-6-phosphate. PFK is an allosteric
enzyme, modelled with a MWC mechanism,

v2 = σM
αe(1 + αe)n−1(1 + γ)n + Lθαce′(1 + αce′)n−1

L(1 + αce′)n + (1 + γ)n(1 + αe)n
(4.67)

Where e = (1 + ε)−1 and e′ = (1 + ε′)−1 with ε and ε′ as relative catalytic
constants of the T and R states. The first rate v1 is fixed to 0.7 and
v2 = ksγ, with ks = 0.1. The other parameters are: ε = 0.1, ε′ = 0.1,
L = 106, c = 10−5, σM = 5, and θ = 1. Confirm that ADP activates
PFK by studying its rate curves. Simulate this model for various value of
the Hill coefficient (take reference value 2). Choose as initial conditions:
α(0) = 40 and γ(0) = 0.8. What is effect of the removal of the activation?

In figure 4.10 complicated dynamics is shown induced by regulation of co-
operative enzymes. Similar complex dynamics has been observed in in vitro
studies on glycolysis. The current view is that under physiological conditions,
chaos and complex oscillations can be ruled out and would be hazardous for
cells. Regular glycolytic oscillations have been shown for yeast, but again under
particular and unphysiological conditions.

α γ
+

Figure 4.9: Network diagram for the simplified model developed by Goldbeter
and Lefever [12] to study the role of the product activation of PFK by ADP in
glycolysis. In this model, PFK was modelled according to a MWC mechanism.

4.7.3 The reversible Hill Equation

The cooperative enzymes we have treated in the previous section can be some-
times unrealistic models. They do not describe reversible enzymes and only
take into account the action of the substrate. A more realistic model would
describe cooperative enzymes as having reversible rates, which are sensitive to
the concentrations of substrates, products, and effectors. Such a model would
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Figure 4.10: Network diagram and dynamics of an illustrative model for complex
dynamics as developed by Decroly and Goldbeter [8]. The three plots with
dynamics differ in the value of a first-order rate constant ks for the degradation
of γ. The plot of the left (for ks = 1.9 indicates that the values of the three
variables as function of time settle onto a so-called limit cycle; oscillation with
a single period. At a slightly higher value for ks, at 2, the dynamics becomes
chaotic and settles onto a strange attractor (middle plot). When, ks equals 2.032
the systems displays complex oscillations. The rate equations for this model
are: v1 = v/Km1, v2 = α(1+α)(1+β)2

L1+(1+α)2(1+β)2 , v2 = β(1+dβ)(1+γ)2

L1+(1+dβ)2(1+γ)2 , and v4 = ksγ.
The differential equations are: dα/dt = v/Km1 − σ1θ, dβ/dt = q1σ1θ − σ2η
and dγ/dt = q2σ2η − ksγ. The following constants were used: v/Km1 = 0.45,
σ1 = σ2 = 10, q1 = 50, q2 = 0.02, L1 = 5 ∗ 108, L2 = 100, and d = 10−7. This
is a sufficient description of the system to play with it yourself!

become very complicated to derive and to handle as it would depend on a large
number of parameters. In addition, the experimental determination of such
mechanisms would require an enormous amount of experiments. The number of
experiments to determine the kinetics of yeast phosphofructokinase was about
600. Hofmeyr and Cornish-Bowden took up the challenge to derive a reversible
product-sensitive cooperative enzyme kinetics that does not suffer from a great
number of parameters [15]. They named it the reversible Hill equation to em-
phasize its two characteristics; it’s reversible and phenomenological, as Hill’s
original equation.

The derivation of this equation is straightforward. It assumes extreme co-
operativity such only the free enzyme or the fully saturated enzyme species
exist; either all or none of the binding sites are occupied. We will illustrate
the derivation for an enzyme with two subunits (figure 4.11). Each of the sub-
units catalyzes the reversible uni-uni reaction from S to P . The total enzyme
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e
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es2 ep2esp

e

es2 ep2esp

Figure 4.11: Illustration of the assumption in the derivation of the reversible
Hill equation for an enzyme with two subunits each catalyzing the reversible
conversion of S into P . On the left, the complete mechanism is shown and on the
right the reduced mechanism as assumed for the reversible Hill equation. The
enzyme is either in its free state, with none of its subunits bound to reactants,
or all binding sites are occupied. This assumption means extreme cooperativity
between the subunits.

concentrations obeys,
eT = e+ es2 + 2esp+ ep2 (4.68)

It was assumed that the concentrations of es and ep are negligibly small. This
is the essential assumption in the derivation of the reversible Hill equation. It
amounts to assuming extreme cooperativity between the subunits; if one subunit
has bound a substrate the other has near infinite affinity for the substrate. The
2 in front of esp denotes the two forms of this species, e.g. with s and p once
on the first and the second binding site and vice versa for the other form. The
rate of the enzyme then corresponds to,

v = k+(2es2 + 2esp)− k−(2ep2 + 2esp) (4.69)

The enzyme substrate species are assumed to be in thermodynamic equilibrium,

es2 =
e · s2
s20.5

esp =
e · s · p
s0.5p0.5

es2 =
e · p2

p2
0.5

(4.70)

p0.5 and s0.5 are at this point defined phenomenologically. The term s20.5 has
to equal αK2

s with α as a cooperative interaction coefficient with Ks as the
dissociation constant of a single binding site for s. Accordingly, s0.5 and p0.5

are equal to
√
αKs and

√
αKp, respectively. To ascertain that the es and
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ep are negligibly small α needs to be much smaller than 1. The free enzyme
concentration can now be equated,

e =
eT

1 + s2

s20.5
+ 2 s·p

s0.5p0.5
+ p2

p2
0.5

(4.71)

and the other species as well, for instance,

es2 =
eT

1 + s2

s20.5
+ 2 s·p

s0.5p0.5
+ p2

p2
0.5

s2

s20.5
(4.72)

The rate of the enzyme now becomes,

v =
2k+eT

(
s2

s20.5
+ s·p

s0.5p0.5

)
− 2k−eT

(
p2

p2
0.5

+ s·p
s0.5p0.5

)

1 + s2

s20.5
+ 2 s·p

s0.5p0.5
+ p2

p2
0.5

=
2k+eT

s
s0.5

(
s
s0.5

+ p
p0.5

)
− 2k−eT p

p0.5

(
p
p0.5

+ s
s0.5

)

1 + s2

s20.5
+ 2 s·p

s0.5p0.5
+ p2

p2
0.5

=

(
V +
MAX

s
s0.5
− V −MAX

p
p0.5

)(
s
s0.5

+ p
p0.5

)

1 +
(

s
s0.5

+ p
p0.5

)2

=
V +
MAX

s
s0.5

(
1− p

sKEQ

)(
s
s0.5

+ p
p0.5

)

1 +
(

s
s0.5

+ p
p0.5

)2 (4.73)

Here the maximal forward and backward rate are defined as, V +
MAX = 2k+eT

and V −MAX = 2k−eT .
Hofmeyr and Cornish-Bowden have generalized equation 4.73 to enzymes

with n subunits,

v =
V +
MAX

s
s0.5

(
1− p

sKEQ

)(
s
s0.5

+ p
p0.5

)n−1

1 +
(

s
s0.5

+ p
p0.5

)n (4.74)

If p = 0 the Hill equation is obtained. Note that the exponent does have a
physical meaning in the Hofmeyr & Cornish-Bowden derivation, whereas in the
original equation derived by Hill it did not.

Activation and inhibition can be incorporated into this equation,

v =
V +
MAX

s
s0.5

(
1− p

sKEQ

)(
s
s0.5

+ p
p0.5

)n−1

1+
“

x
x0.5

”n

1+β
“

x
x0.5

”n +
(

s
s0.5

+ p
p0.5

)n (4.75)

If β < 1 the effector acts as an inhibitor and when β > 1 it becomes an activator.
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Figure 4.12: Numerical analysis of the reversible Hill rate equation (equation
4.75). In the upper left plot, product inhibition is illustrated (p was varied). The
upper right plot displays product inhibition for various values of the substrate,
s. The lower two plots show the effect of the β parameter (p = 0); on the left it
equals 0.2 and on the right 5. In all plots, s0.5 = p0.5 = 1 and n = 4. x0.5 = 1
in all plots except the upper left plot where it was set to 0.1. The equilibrium
constant was set to 106 in all plots except the upper right plot where it equals
100.

Exercises

Negative feedback regulation in metabolic pathways has profound influences on
homeostasis and which enzymes influence the steady-state flux most. Make a
kinetic model of three enzymes with the second and the third following reversible
Michaelis-Menten kinetics with a Vmax of 1000, KM ’s of 1, and an equilibrium
constant of 10. To allow for steady state the pathway substrate S and product
P are fixed. We label the three variable metabolites in the pathway as x1 to
x3. The first enzyme in the pathway is an enzyme following the reversible Hill
rate equation, which is inhibited by the fixed final product of the pathway, p,

v =

Vfs
s0.5

(
1− s

x1Keq

)(
s
s0.5

+ x1
x1,0.5

)n−1

(
s
s0.5

+ x1
x1,0.5

)n
+

1+
“

p
p0.5

”n

1+α
“

p
p0.5

”n

(4.76)

The parameters for this enzyme are: x1,0.5 = 104, p0.5 = 1, n = 4, and α =
0.0001, Vf = 200, and Keq = 400. Set s equal to 1. The first enzyme has
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been parameterized such that it is not very sensitive to its product, x1. How
was this achieved? Test your hypothesis by studying the enzyme in isolation
of the pathway. Explain why the first enzyme, in the absence of the feedback,
determines the steady state flux when it has little or no sensitivity towards
its immediate product ? At what concentration of P will this entire pathway
operate at thermodynamic equilibrium? What are the equilibrium concentration
of the metabolic intermediates? Verify your hypothesis using the model and by
calculating those concentrations by hand. Make a log-log plot of the steady-
state flux as function of the fixed product concentration. This is called a rate
characteristic. Let the fixed product concentration change from very small to
its equilibrium value. Explain what you see. Change n and p0.5 to determine
how the feedback influences curve? What do you conclude? Vary the value
of s0.5. What is the immediate influence on the first enzyme? How does it
influence the shape of the rate characteristic? Suppose now that the product
P is consumed by a fourth enzyme, following 10p/(0.01 + p) as rate equation.
Add this curve to the plot. Which enzyme has the largest influence on the
steady-state flux - which enzyme control the flux the most - when its level is
changed? How does this conclusion depend on the strength of the feedback?
Homeostasis of a metabolite can be defined as little changes in its concentration
over a range of steady states while the flux through this metabolite changes
very much. When is P more homeostatic with weak or strong feedback? Write
in a single sentence your conclusion about the interplay between homeostasis,
flux control, and negative feedback. You can read more about these issues in
references [16, 17].
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Chapter 5

Stoichiometric network
analysis

5.1 Introduction

Kinetic models require information about the initial concentrations of the vari-
able intermediates, environment, reaction kinetics, thermodynamics, and stoi-
chiometry. They allow for the calculation of the dynamics of the concentrations
of molecules in networks and their dependencies on parameters. Very useful
information for many biological studies. But in many cases not all of that in-
formation is available. What to do in such cases? For metabolic networks a
number of system properties can be found with stoichiometric network anal-
ysis (SNA). Signaling and gene networks can analyzed with graph theoretical
methods, which will not be discussed here.

Stoichiometric models solely consider the stoichiometry of a metabolic net-
work. Often, SNA requires in addition a specification of the nutrient availability
in the environment. Stoichiometry can be a potent constraint for the behavior
of metabolic networks as we shall see. Collectively, all the methods developed
for the study of stoichiometric models have been termed stoichiometric network
analysis. SNA has grown into quite a large and active field with many different
methods, often with a biotechnological application in mind.

In this chapter, we will introduce some of the basics of SNA: conservation
relationships, independent fluxes, flux modes, flux space, flux balance analysis
and flux variability analysis.

77
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5.2 The stoichiometric matrix

The mathematical description of a kinetic model with r reactions and m inter-
mediates is given by (an example is introduced below),

d

dt
x(t,p,x0) = Nv(x(t,p,x0),p) (5.1)

with: x as them×1 concentration (or state) vector, N as them×r stoichiometric
matrix, x0 as the m×1 vector of initial conditions (x0 = x(0,p)), t as time, and
p as the parameter vector. Often equation 5.1 is written in shorthand notation
as dx/dt = Nv(x,p) or dx/dt = Nv.

For example consider the network show in Figure 5.1. The stoichiometric
matrix is given by (we have indicated the names of the columns and rows here,
this is in the definition of the N matrix of course),

N =




v1 v2 v3 v4 v5
x1 1 −1 −1 0 0
x2 0 0 1 −1 0
a −1 0 0 1 1
b 1 0 0 −1 −1
x3 0 1 0 0 −1




(5.2)

The rate vector is composed out of the rate equations, e.g. reversible
Michaelis-Menten, convenience kinetics, or Monod Wyman Changeux models.

5.3 Conservation relations and the link matrix
L

Within molecular networks molecules are being cut and pasted by enzymes.
This means that a molecule within a network is composed out of parts of other
molecules, e.g. its first carbon atom may derive from 2-oxoglutarate, its second
nitrogen from alanine, etc. Often such parts of molecules are being recycled,
they are not taken up or excreted by a cell. Examples of such recycled molecules
within metabolism are the adenoside moiety of ATP, NAD, FAD, and COA.

Consider the metabolic pathway depicted in figure 5.2. In the first reaction,
some part of A is glued to S to give rise to the remainer of A, B, and the newly
synthesized molecule X. The second reaction isomerizes X into Y . Finally, the
part of A glued to S in the first reaction is returned to B to form A and P . If
you follow this logic then you will realize that P is an isomer of S. To make
this more clear we rename the species in the metabolic pathway, see figure 5.3.

Figure 5.3 shows that species A is composed out of two parts, C and D,
and that C is glued to S in the first reaction and CD is formed again in the
last reaction. It also indicates that C and CD do not leave the system, only
S and S∗ do. In other words, the total amounts of C and D denoted by CT
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Figure 5.1: A branched metabolic pathway with five enzymes, five intermediates,
and four fixed external concentrations. The intermediates A and B are being
recycled.

Figure 5.2: A metabolic pathway with three enzymes, four intermediates, and
two fixed external concentrations (S,P ). The intermediates A and B are being
recycled.

and DT , remain fixed as function of time and are related to initial metabolite
concentrations,

CT = CD(t) + SC(t) + S∗C(t) = CD0 + SC0 + S∗C0

DT = D(t) + CD(t) = D0 + CD0 (5.3)

These equations tell you if you start with 5 mM of D and 3 mM of CD at
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Figure 5.3: The metabolic pathway of figure 5.2 with new names for the metabo-
lites.

time zero that D(t) + CD(t) at any time point will sum to 7.5 mM . Thus D
and C are conserved! Equations 5.3 are called moiety-conservation equations.
Equation 5.3 also specifies a relationship for the rates of change,

0 = ˙CD(t) + ˙SC(t) + ˙S∗C(t)
0 = Ḋ(t) + ˙CD(t) (5.4)

These equations indicate their exist linear combinations between the rates of
change, which defines L as a transformation matrix,



˙CD(t)
˙SC(t)
Ḋ(t)
˙S∗C(t)


 =




1 0
0 1
−1 0
−1 −1



( ˙CD(t)

˙SC(t)

)
=
(

I
L0

)

︸ ︷︷ ︸
link matrix L

( ˙CD(t)
˙SC(t)

)
(5.5)

The metabolites CD and SC are termed the independent intermediates and
D and S∗C the dependent intermediates. The last equations indicate that the
dynamics of all the species can be obtained from the dynamics of only the
independent intermediates. The mass balances for all the metabolites (equation
5.1) are given by,




˙CD(t)
˙SC(t)
Ḋ(t)
˙S∗C(t)


 =




−1 0 1
1 −1 0
1 0 −1
0 1 −1




︸ ︷︷ ︸
N




v1
v2
v3


 (5.6)

Using the moiety conservation relationship (equation 5.3), we can substitute for
the concentrations of D(t) and S∗C(t) in all the rate equations,

D(t) = DT − CD(t)
S∗C(t) = CT − CD(t)− SC(t)
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The dynamics of the independent intermediates are now given by,

( ˙CD(t)
˙SC(t)

)
=
(
−1 0 1
1 −1 0

)

︸ ︷︷ ︸
NR




v1
v2
v3


 (5.7)

Note that from this set of equation all reference to the concentrations of the
dependent intermediates have been eliminated! They are redundant for deter-
mining the dynamics. The dynamics of all intermediates can be obtained from
equation 5.5. N has been decomposed as,

N =
(

NR

N0

)
(5.8)

with N0 as,

N0 =
(

1 0 −1
0 1 −1

)
(5.9)

and NR as defined above.
Using the above described method, involving renaming of the metabolites,

will allows help you to derive the moiety conservation relationships by hand. In
systems of the size of glycolysis can easily be handled. In the general case, we
then obtain for equation 5.1,

(
ẋI

˙xD

)
=

(
NR

N0

)
v = LNRv (5.10)

ẋI = NRv (5.11)
˙xD = L0ẋI (5.12)

The general derivation of these equation will be given below using linear algebra.
Identification of the moiety conservation relationships can be done by,

xD − L0xI = T (5.13)

When we again consider the metabolic network in figure 5.1 the L matrix is
given by,

L =




x1 x2 a
x1 1 0 0
x2 0 1 0
a 0 0 1
b 0 0 −1
x3 −1 −1 −1




(5.14)

This means that the independent variables are x1, x2, and a. The concentrations
of the remaining dependent metabolites are linearly to the independent species
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through,

L0 =




x1 x2 a
b 0 0 −1
x3 −1 −1 −1


 (5.15)

The reduced stoichiometric matrix is now corresponds to the first three rows
of the N matrix,

NR =




v1 v2 v3 v4 v5
x1 1 −1 −1 0 0
x2 0 0 1 −1 0
a −1 0 0 1 1


 (5.16)

The moiety conservation equations are (using equation 5.13),

constant1 = a(t) + b(t) = a(0) + b(0)
constant2 = a(t) + x1(t) + x2(t) + x3(t)

= a(0) + x1(0) + x2(0) + x3(0) (5.17)

The last relationship will surprise many of you.

Exercises

The metabolic network displayed in Figure 5.4 is a simplified representation of
the glycolysis as it occurs in Trypanosomes. Determine the following matrices
N, NR, L and the moiety conservation relationships. You should realize that
any linear combination of those relationships is again a set of valid conservation
relationships. Try to write the relationships you find in a form which is most
insightful. For instance by only having sums of concentrations.

5.4 Independent fluxes and the kernel matrix K

The previous section determined a stoichiometric relationship between the con-
centrations of metabolites that is also valid for transient states of the net-
work. We will now consider a stoichiometric relationship between fluxes through
metabolic pathway that hold only at steady state.

At steady state, all the fluxes through a linear pathway without moieties
are equal.1 Thus to determine all the fluxes for a steady-state linear pathway
we only have to know one them, the so-called independent flux. All the other
fluxes are then equal to this value and are termed the dependent fluxes. For
complicated pathways with branches the identification of the independent and
dependent fluxes becomes a bit more involved. Again linear algebra will proof
useful.

1Remember the convention that enzyme conversion rates are called fluxes at steady state
conditions.
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is unsatisfactory for modelling trypanosomal
metabolism, but it is adequate for arriving at
a first approximation of the stoichiometric
constraints.
For the algebraic development we shall use the

metabolite symbols shown in Fig. 2: a, hexose
6-phosphate; b, fructose 1,6-bisphosphate; c,
dihydroxyacetone phosphate; d, glyceraldehyde
3-phosphate; e, 1,3-bisphosphoglycerate; f, gly-
cerol 3-phosphate; g, ATP; h, ADP; i, AMP; j,
NADox; k, NADred. The rate at which any
metabolite concentration changes can then be
expressed as the sum of the rates of the reactions

that produce it minus the sum of the rates of
those that consume it (multiplied by any appro-
priate stoichiometric coefficients). For hexose
6-phosphate, for example, the rate of change of
its concentration is da/dt, the difference between
the rates of reactions 1 and 2:

da
dt

¼ v1 " v2 ð1Þ

and the other metabolites may be handled
similarly:

db
dt

¼ v2 " v3; ð2Þ

dc
dt

¼ v3 " v4 " v7; ð3Þ

dd
dt

¼ v3 þ v4 " v5; ð4Þ

de
dt

¼ v5 " v6; ð5Þ

df
dt

¼ v7 " v8; ð6Þ

dg
dt

¼ "v1 " v2 þ v6 þ v8 þ v9; ð7Þ

dh
dt

¼ v1 þ v2 " v6 " v8 " 2v9; ð8Þ

di
dt

¼ v9; ð9Þ

dj
dt

¼ "v5 þ v7; ð10Þ

dk
dt

¼ v5 " v7: ð11Þ

Some of these equations are more complicated
than others because some metabolites are
involved in more processes than others. For
example, eqn (7), referring to ATP, has five
terms on the right-hand side because ATP

b: Fructose 1,6-P
2

e: Glycerate 1,3-P2

Pi

1

g: ATP

h: ADP

2

3
4

5

6

7

8

ADPAMP

ATP ADP

9

(Hexose)

(Glycerol) (Pyruvate)

c: 

P

f : P

g: ATP

h: ADP

a: Hexose 6-P

h: ADP

g: ATP

hi

g h

j: NADox

k: NADred

d : Glyceraldehyde-3P

Glycerol-3

Dihydroxy-
acetone- (   )

Fig. 2. Simplified form of the scheme shown in Fig. 1,
reactions 10 and 11 being omitted and the distinction
between glycosome and cytosol ignored. Metabolites that
are treated as fixed reservoirs in the analysis (hexose,
glycerol, pyruvate and inorganic phosphate) are shown in
parentheses. The following short symbols for the inter-
mediates are defined: a, hexose 6-phosphate; b, fructose
1,6-bisphosphate; c, dihydroxyacetone phosphate; d, gly-
ceraldehyde 3-phosphate; e, 1,3-bisphosphoglycerate; f,
glycerol 3-phosphate; g, ATP; h, ADP; i, AMP; j, NADox;
k, NADred. These correspond to those used in the text in
equations and for labelling the columns of the augmented
stoichiometric matrix that refer to the rates of change of the
metabolite concentrations. Likewise, the numbers 1–9 that
label the nine processes are also used in the text to label the
columns of the stoichiometric matrix, and defined in the
legend to Fig. 1, with the simplification that reaction 1
combines reactions 1a–1c of Fig. 1, reaction 6 combines
reactions 6a–6d, and reaction 8 combines reactions
8a and 8b.
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Figure 5.4: Simplified representation of the glycolysis as it occurs in Try-
panosomes.

We will consider in this section, networks without moiety conservation rela-
tionships before we outline generic linear algebra methods for their determina-
tion in the next method. In this case, the number of dependent fluxes is given
by the number of variable metabolite concentrations, i.e. mass balances. This
can be easily understood. If there are r fluxes and m variable metabolites, then
m (steady-state mass balance) relationships exist between all fluxes and r −m
fluxes need to be supplied - those are the independent fluxes - to determine
them all.

Let’s consider an example network, displayed in figure 5.5. This network has
no conserved moieties, seven fluxes and five variable metabolites. So we need to
know two flux values to determine all values. Clearly, some combinations of two
fluxes will not work. Knowing for instance J1 and J2 will not help to determine
the fluxes after the branch. When we would know J1 and J3, all fluxes can be
determined using the mass balances for the variable metabolites at steady state
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(in the order of the metabolite numbering),

J1 = J2

J2 = J3 + J5

J3 = J4

J5 = J6

J6 = J7 (5.18)

S X1 X2

X3

X4 X5 P2

P1
1 2

3

4

5 6 7

Figure 5.5: A branched metabolic pathway with five variable metabolites and
seven fluxes.

These equations can be captured in matrix form,



J1

J3

J2

J4

J5

J6

J7




=




1 0
0 1
1 0
0 1
1 −1
1 −1
1 −1




(
J1

J3

)
=
(

I
K0

)

︸ ︷︷ ︸
K

(
J1

J3

)
(5.19)

This equation indicates that the K-matrix relates all flux values to the values
of the independent fluxes. Each column of the K-matrix is a segment of the
metabolic network that can attain a steady-state state by itself. They are
called flux modes. So any flux distributions of the entire network is a linear
combinations of its flux modes.

For systems without moieties the method outlined in this section always
works but becomes cumbersome for large systems. Linear algebra can help us
make this task computable by Matlab or Mathematica as will be shown in the
next section.

5.4.1 Exercise

Identify the flux models of the network displayed in figure 5.5. Construct a new
valid K matrix that has only positive entries by taking a linear combinations of
the columns of the K matrix given in equation 5.19.
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5.5 Derivation of the K and L matrix using lin-
ear algebra for any N matrix

In order to determine the K and L for any N matrix we have to follow the
scheme displayed in figure 5.6. From above, we conclude from equation 5.12,

L0NR = N0 (5.20)

This equation can be rearranged to yield,

(
−L0 I

)( NR

N0

)
= 0 (5.21)

and therefore,

(
NR

N0

)T (
−L0 I

)T = 0 (5.22)

So the right nullspace of the transpose of N (so N’s left nullspace) equals(
−L0 I

)T . The rank of N, m0 given the number of independent rows,
which equals the number of independent metabolites. The dimensions of L are
therefore m×m0.

At this point, we have determined the reduced stoichiometry matrix NR.
The number of dependent fluxes in steady state is given by the number of row
of NR, m0. The number of independent fluxes is r−m0. The K matrix can be
obtained from the right nullspace of the reduced stoichiometry matrix NR,

NRK = 0 (5.23)

Note that the K matrix is not unique, any linear combination its combina-
tions of its columns or their multiplication with a constant will give rise to a
valid nullspace matrix of N. Elementary flux modes and extreme pathways are
unique definitions.

There is one more useful property of kernel matrices. We have already
concluded that their columns are called flux modes and have the property that
they can attain steady-state by themselves; that is, they are either cycles in the
network or link source to sink metabolites. They also have an overall reaction
stoichiometry. For instance, the overall stoichiometries of the flux modes of the
stoichiometric network displayed in figure 5.5 are S → P1 and P2 → P1, for
the first and second flux mode, respectively. These can be determined in the
following manner,

KT · r (5.24)

where r describes the stoichiometry of the reactions as,

r = XTN (5.25)
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Nmxr

3. Right-nullspace of NT gives L, NT[-L0 I]T=0

1. Number of independent metabolites m0 
is the rank of N
2. L will be mxm0 in size

NR,m0xr
1. Number of independent fluxes equals r-m0

2. K will be rx(r-m0) in size
3. Right-nullspace of NR gives K, NRK=0

Figure 5.6: Workflow for L and K determination.

Where X is the vector of species names. This gives for the network displayed
in figure 5.5,

(
1 0 1 0 1 1 1
0 1 0 1 −1 −1 −1

)




−S +X1

−X1 +X2

−X2 +X3

−X3 + P1

−X2 +X4

−X4 +X5

−X5 + P2




=
(
−S + P1

−P2 + P1

)
(5.26)

Exercises

1. Use Mathematica to derive the K for the network displayed in figure 5.4.

2. How can the overall stoichiometry of a flux distribution J be determined?
If the network in figure 5.5 has the following distribution (10, 10, 6, 6, 4, 4, 4)T

what is the overall stoichiometry of the pathway?

3. Determine the N, K and L matrix for the four metabolic networks dis-
played in figure 5.7.
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Figure 5.7: Four metabolic networks with that differ in independent fluxes and
metabolic intermediates.

5.6 Steady-state flux space and constraint-based
modeling

In the previous section we have seen how to analyse a stoichiometric matrix to
determine the moiety conservation and flux relationships of a metabolic net-
work. In this section we will explore the steady-state solution space further,
particularly with respect to constraints that can be imposed on flux distribu-
tions. This analysis and the collection of techniques involved are often called
constrained-based modeling. We will discuss the uses and limitations of such
approaches, provide examples of simple systems to get the basic idea, and then
discuss its use in much larger systems: genome-scale metabolic models.

In Figure 5.8 a simple branched pathway is depicted, with N = [1,−1,−1].
The rank of N is 1, and since there are 3 rates, the dimensions of the null space
of N is 2, which is equivalent to 2 independent fluxes. If we take v1 and v2 as
independent fluxes, the Kernel K equals:

K =




1 0
0 1
1 −1


 (5.27)

The columns of the Kernel can be interpreted as flux modes, as indicated in
the figure 5.8. These are pathways running from S1 to P3 (b1), and P3 to P2 (b3),
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S1 

1 
X 

P2 

P3 

2 

3 

S1 X 

P2 

P3 b1= [ 1 0 1 ] 

b3= [ 0 1 -1 ] 

b2= [ 1 1 0 ] 

Figure 5.8: Simple three-enzyme pathway with a branch.

respectively. They are base vectors that span the steady-state solution space,
which in this case is a plane in 3D-space (see Figure 5.9. Note that we have no
constraints at all on the values that reactions can take, i.e., the plane stretches
out to infinity in both directions. However, suppose that reaction 3 is irreversible
under physiological conditions. What we mean by this is that the mass action
ratio of X1 and P3 cannot compensate, within reasonable bounds of [X1] and
[P3], for a very large equilibrium constant of reaction 3. This is in fact a first
constraint on the reaction network: v3 > 0, which is rooted in thermodynamics.
The base vector (flux mode) defined in terms of negative values for v3 is therefore
physiologically unattainable, even though it is mathematically a perfect base for
the null space of N. Adding column 1 to column 2 in equation 5.27 results in
a more useful set of base vectors under the constraint v3 > 0, the original
flux mode S1 to P3, and the new flux mode S1 to P2 (b2). Note that this
Kernel equally well describes the unconstrained null space of N as did the one
of equation 5.27.

The constraint v3 > 0 can graphically be seen as a plane that cuts to solution
space into two halves, only one of which fulfills the constraint. We see that these
constraints reduces the number of feasible base vectors to describe the null space.
In the case that all reactions are (required to be) positive, the solution space
is constraint to the positive quadrant of the flux space, which is then called a
convex space. This is most often not a biologically relevant condition as many
reactions are reversible, but nevertheless it has become the standard way in
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A B

Figure 5.9: Null space of the simple branched pathway of of figure 5.8 spanned
by two different sets of basis vectors. Note that they span the same plane, which
stretches out in all directions if there are no additional constraints: any linear
combination of the basis vectors is a point in the null space.
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Figure 5.10: Popular represenation of the flux cone in 3D. Picture from Price
(2004) Nat Rev Micro 2, 886.

constraint-based modeling reviews to visualise the flux space, which is under
non-negativity a flux cone, some sort of ice cream cone spanned by base vectors
of the Kernel (see Figure 5.10. Under such strict constraints, the basis vectors
for spanning the convex solution space are unique and they are known in the
systems biology literature as extreme pathways. For the pathway of figure 5.8
this flux cone is the triangle spanned by [J1, 0, J3] and [0, J2, J3], i.e. the triangle
in figure 5.9.

Apart from constraints on the direction of reactions, there are also con-
straints possible on the maximal rates of certain enzymes: these can also be
represented as planes that reduce the solution space of possible steady-state
flux distributions. This is illustrated in Figure 5.11, with 0 < J1 < J1,max and
0 < J2 < J2,max. Within constraint-based modeling, constraints on the direc-
tion of fluxes and on their rates are collectively called capacity constraints. The
maximal rates of enzymes are needed to bound the solution space into a closed
polytope: without proper capacity constraints the solution space is unbounded.
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Figure 5.11: Flux cone of simple branched pathway of figure 5.8 as the result of
capacity constraints applied to the original null space.

This is obviously not biologically possible, and bounded solution spaces are
required to ask quesions about optimality, as we will see shortly.

The steady state solution space is important for a number of applications in
systems biology, including dynamic modeling. Stoichiometric analysis is there-
fore the first step to perform when constructing a kinetic model, not only to
find moiety conservation and hence reduce the number of variables that deter-
mine the dynamic behaviour of the model, as shown above. The steady state
flux space gives the set of states to which any kinetic model with this reaction
stoichiometry will eventually evolve to in time, i.e. this state space is not de-
pendent on the kinetic parameters. 2 The kinetic parameters, as we will see,
determine the specific steady state that will be reached in the solution space, it
will determine, together with the initial conditions, the trajectory towards the
steady state, and it will determine the control structure in the steady state (see

2given fixed source and sink concentrations, and assuming for now a unique and stable
solution to the set of ODE’s of the model.
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 Figure 2 | The basics of common modelling strategies. a | A simplified 
metabolic network is shown in which a source can be converted into 
biomass and by-product through several chemical conversions, and 
which involves 3 intracellular metabolites, C1, C2 and C3, and two 
biomass precursors, P1 and P2. The concentrations of source, by-product 
and biomass are set as being fixed; for example, they are continuously fed 
into the system and removed, or the changes in these concentrations are 
slower than the changes in the intracellular metabolites, so at each point 
in time these variables can be treated as constant (pseudo steady-state 
assumption through timescale separation). A desired outcome might be 
to increase by-product formation (for example, lactate) or biomass 
formation. These products compete for common precursors, in this case 
C2 and C3. b | Black box approach. Here, several inputs, such as process 
parameters and variables, are linked to relevant output variables. Such a 
model might be used for process optimization and control. The 
connections inside the black box do not need to be biologically 
meaningful. c | Matrix formulation of the explicit metabolic network 
model. One can derive for each compound in the network a differential 
equation describing its dynamics as a function of the reaction rates. For 
compound C2 in part a, this reads: dC2/dt = v2–v3–v6–D (eq. 1), in which 
D is a term that describes the dilution of compound C2 into new cells; 
that is, D = µ × C2, µ being the growth rate. This dilution effect, however, 
is usually negligible and therefore left out, but for some compounds, such 
as some vitamins, no degradation pathway is known, and dilution into 
new cell is the only sink and should be defined. The entire system is 
described by a set of coupled, ordinary differential equations, which is 
most conveniently notated in matrix form: dC/dt = S × v (eq. 2), in which 
dC/dt is a vector with all time derivatives of the metabolites, v is the 
vector with all reaction rates, and S is the stoichiometry matrix linking all 
the metabolites to the reactions. The differential equation for C2 (eq. 1) 
corresponds to the second row in the stoichiometry matrix S. 
d | Steady-state approach. In metabolic flux analysis and in constraint-
based modelling, steady states are assumed, which postulates that all 
metabolites are balanced and therefore dC/dt = S × v = 0 (eq. 3). This 
results in a set of homogeneous equations, which can be solved with 
basic linear-algebra techniques. The set of all possible solutions to this set 
of equations is called the solution space, which mathematically 
corresponds to the null space of the stoichiometric matrix S81. In general, 
stoichiometric matrices tend to have more reactions than metabolites, 
which is caused by branching in metabolic networks. Moreover, some 
combinations of metabolites might be conserved (for example, the 
adenosine moieties in the adenine nucleotides), introducing linear 

dependencies in the set of equations. Therefore, the set of equations in 
equation 3 is usually underdetermined, resulting in a large solution 
space. Also in this example, there are 5 metabolites and 7 reactions 
(that is, 7 unknowns and 5 equations). The solution space is therefore 
two-dimensional. In part d, the relationship between source, biomass 
formation and by-product formation is shown for this system. From the 
stoichiometry matrix S it can be derived that in steady state 
v1 = v5+2v7 (a relationship that can be found by inspection for this 
system, but for any realistic system requires linear-algebra software such 
as Matlab or Mathematica). e | Metabolic flux analysis. Equation 3 is 
solved by measuring enough unknown fluxes (reaction rates in steady 
state) so that the system becomes determined (or preferably 
overdetermined). Alternatively, 13C-labelling studies can be used to 
estimate fluxes. Therefore, the state the system is in, a point in the 
solution space, is estimated based on experimental data. For example, 
if the biomass and by-product formation rates were measured, the 
consumption of source would be known. Agreement with measured rates 
of source consumption would validate the underlying network structure. 
Metabolic flux analysis therefore describes a metabolic system. There 
are two approaches to actually predict the steady state of a system: 
f | Flux balance analysis. A predicted solution to equation 2 is found by 
assuming that the system fulfils an optimality condition, and therefore 
the state of the system could be predicted by finding the optimal flux 
distribution for that objective function. This technique is often used in 
genome-scale models, in which the number of unknown fluxes is too 
large to measure. The optimal solution should lie on one of the red 
vectors (sometimes referred to as the ‘line of optimality’, indicated as 
LO105), corresponding to optimal biomass formation or by-product 
formation. To find a particular maximum, one or more capacity 
constraints are required, otherwise the solution to the optimization will 
be unbounded (the vector goes to infinity). At a given source capacity 
constraint (indicated in the figure), the corresponding optimal solutions 
for growth and by-product formation are indicated as red dots. 
g | Kinetic modelling. Alternatively, one might make a full kinetic model. 
In such an approach, all kinetic parameters are collected and equation 3 
is solved numerically with v = ƒ (C,p); that is, each reaction rate is a 
function of some kinetic parameters p and the concentration of 
substrates and products, C. Such an approach results in a prediction of 
not only all steady-state fluxes but also all metabolite concentrations. 
Additionally, one obtains the dynamics of the system as well as the 
control structure of the system, that is, the sensitivity of the fluxes and 
metabolites to parameters80.
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Figure 5.12: From [34].

also Figure 5.12).
But also without any kinetics, stoichiometric analyses have been very pop-

ular, and also successful, in analyzing metabolic networks. In metabolic engi-
neering, people use stoichiometric network analysis to deduce flux distributions
from measured data. The idea is simple: if the dimension of the solution space
is, let say, 5, meaning there are 5 independent fluxes that together determine
all dependent fluxes, one needs to just measure those 5 fluxes. The issue is
of course that the only fluxes that are easily accessible are the external ones,
the product formation rates and the nutrient consumption rates. The trick is
therefore to find a K matrix in which all independent fluxes can be measured
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experimentally. This activity is often referred to as metabolic flux analysis.
In the genomic era, especially the stoichiometric analysis of very large genome-

scale metabolic networks have been very useful to turn sequenced genomes into
mathematical models representing the complete metabolic network of the se-
quenced organism. The approaches, pitfalls and bioinformatic tools for making
such metabolic reconstructions fall outside the scope of this book, but have
been described in more detail elsewhere. These genome-scale metabolic net-
works have sizes in the order of 500 to 1500 (!) reactions, and similar number
of metabolites. The number of independent reactions is often over 100! The
size of these networks makes it close to impossible to model it comprehensively
with kinetic models. The complexity would be devastating, and the number of
parameters involved are simply so large that we do not have the capacity to
measure them all. Therefore people have resorted to stoichiometric analyses of
such networks. Clearly, even the steady state solution space of these networks
is hugely complex, but there are a number of analyses that have proven to be
useful. The most popular and influential one is called Flux Balance Analysis
(FBA). With FBA we use linear optimization to find flux distributions that
maximize or minimize a certain objective function. This objective function is
itself a flux or a linear combination of fluxes. The optimisation problem reads:

max Z

subject to
Nv = 0 (steady state constraint, often called ”mass-balance” constraints)
ai < vi < bi for all vi elements of v (capacity constraints) (5.28)

Note that if ai is 0, the corresponding reaction is put to be irreversible. For
most internal, reversible fluxes, ai and bi are set to (-)infinity, which is fine as
long as sufficient input fluxes are constraint by some maximum to bound the
solution space. To understand what the optimisation does, we will make use
of the same example as in the previous part, the network of Figure 5.8. In
Figure 5.13 the solution space is drawn as a projection on the (J2, J3) plane.
Important is the line J2 + J3 = J1 (mass-balance). By constraining J1 to
J1,max, the solution space is already bounded; additional capacity constraints
for J2 and J3 introduce the typical polytope shape, shaped by a number of
edges that represent constraints. In this graph we can immediately see what
flux distribution would maximize a certain objective function, Z, that we can
express as Z = w2J2 + w3J3, where w2 and w3 are some scalars weighting the
contribution of each flux in the objective function. In this particular example
there are several possibilities: (i) unique solution: if w2 is not w3 and w2 and
w3 are nonzero. If w2 > w3 point B in Figure 5.14 is reached, if w2 < w3, point
A is reached (ii) an infinite number of solutions: if w2 = w3, all points between
A and B maximizes Z (see Figure 5.15) (iii) an infinite number of solutions: if
w2 = 0 and w3 is nonzero, any point between the y-axis and point A would be a
solution (there is obviously an equivalent situation if w3 is zero). (iv) unbounded
solutions are also possible, where the value of Z would reach infinity, but this
is not possible in this example where the flux cone is fully bounded.
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J2 

J3 

J2 + J3  = J1  !  J1,max 

J3 ! J3,max 

J2 ! J2,max 

Figure 5.13: 2D projection of the solution space of the network displayed in
figure 5.8. Indicated are a mass balance constraint (J2 + J3 = J1), and two
capacity constraints, on J2 and on J3

J2 

J3 

A 

B 

Z = 0.5J2 + J3 

Z = 4J2 + J3 

Figure 5.14: Solution of FBA of the network displayed in figure 5.8 with an
objective function with different weights on J2 and J3.
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J2 

J3 

A 

B 

Z = 0.5J2 + 0.5J3 

Figure 5.15: Solution of FBA of the network displayed in figure 5.8 with an
objective function with equals weights on J2 and J3.

In the case of 500 to 1000 reactions, we obviously have to resort to com-
puters rather than inspection to find the optima. In engineering very efficient
algorithms for these type of linear optimisation problems have been developed,
collectively called linear programming. An FBA problem with > 1000 reac-
tions is solved within seconds on a desktop using standard solvers built-in in
Mathematica or Matlab. Specifying constraints, the objective function, and
interpreting the result are the most difficult parts of genome-scale constraint-
based modelling. The constraints come from pysiology and experimental data,
i.e. what nutrients are in the medium that the organisms can consume, and at
what rate are these nutrients consumed; what products can be made, what is
the composition of the cell in terms of proteins, lipids, RNA etc. So, in general,
FBA yields unique maximal values for Z, but not necessarily unique flux dis-
tributions to reach this value of Z. This is extremely important in real-life use
of the technique, as one cannot rely on a single optimisation to conclude what
the optimal flux through a step should be to reach Z (for example as a candi-
date reaction to delete or augment by metabolic engineering). The technique
to check for uniqueness or degeneracy of flux values of individual reactions of
an FBA solution, is called flux variability analysis. It should follow any FBA
solution of interest. FVA is formulated as:



96 CHAPTER 5. STOICHIOMETRIC NETWORK ANALYSIS

max/min vi for all vi element in v
subject to
Nv = 0 (steady state constraint, often called ”mass-balance” constraints)
ai < vi < bi for all vi elements of v (capacity constraints)
Z = Zmax FBA result (5.29)

The last constraint ensures that the maximal and minimal fluxes through each
individual flux is evaluated at the optimum objective function value of the FBA
problem. FVA involves many rounds of FBA, 2 times the number of reactions
in the network. Subsequently the span of a reaction is defined as the maximal
minus the minimal value: if the flux through a reaction is completely fixed by the
maximal value of Z, its span is 0. In the example of Figure 5.13, if Z = J2 +J3,
the span for J2 is the difference of its values in A and B (B-A). A large difference
means that this flux is not constraint by the objective function and that there is
a high degree of flexibility in that part of the network. FVA can also be used for
other purposes than testing alternative FBA solutions, such as a genome-scale
equivalent of metabolic flux analysis. In this case measured flux data can be
used as constraints in the FVA formulation, rather than Zmax,FBA, and FVA
will test which parts of the network are predictable by the measurements (small
span) and which parts are not (large span). Remember that a genome-scale
model has in the order of 100 degrees of freedom (independent fluxes) so one
would need quite a lot of data to completely predict all fluxes in such a model!

5.7 Applications and pitfalls

One key issue of course is the definition of the objective function: if we want
to predict flux distributions, using FBA, that make biological sense, we need
objective functions that make biological sense. Maximizing ethanol production
for biofuel production would be a good objective function from the perspec-
tive of man (not necessarily from the perspective of yeast!). In the literature,
maximization of growth rate has most often been used as an objective function,
with quite some success, but also failure. Maximization of growth rate makes
sense for microorganisms; it is in fact used in population dynamic studies as
the proxy for fitness. But do we really optimise growth rate with FBA? To
answer this question, we first need to define the objective function, growth rate,
within the FBA format. Within stoichiometric model, growth is modeled as a
sink of biomass components (protein, DNA, RNA, lipid, carbohydrates) that
reflect the biomass composition of the cell. Here is an example for the lactic
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acid bacterium Lactobacillus plantarum:

2.45 protein+ 0.279 RNA+ 0.062 DNA+ vitamins+ 0.081 lipids
+ 0.129 polysaccharides+ 0.146 peptidoglycans+ 0.014 wall teichoicacids
+ 0.013 lipoteichoicacids+ 27.4 ATP + 27.4 H2O

→ biomass+ 27.4ADP + 27.4H+

The stoichiometric coefficients have unit mmol gDW−1. Note the use of 27.4
ATP to form biomass: this number reflect lumped ATP costs for putting all the
biomass components into actual living cells. Many of the processes involved are
still unknown and unaccounted for in the models. Hence this is an empirical
number fitted by varying the growth rate (e.g. in a chemostat) and estimat-
ing the amount of ATP that is being formed by catabolism. Assuming that
this ATP is used for growth, the growth-associated ATP requirement can be
estimated. Note also that because of the unit of the stoichiometric coefficients
(mmol gDW−1), the unit of this reaction is different from the other reactions
in the network. Convention is to express fluxes as mmol h−1 gDW−1; conse-
quently, the unit of the biomass formation rate is h−1, the specific growth rate!
So it appears indeed that we optimise growth rate! This is wrong. Remem-
ber we are dealing with stoichiometric network models, and that we need some
capacity constraints to bound the solution space: the maximal growth rate is
therefore always bounded by some limiting input flux: therefore we ask what
the maximal growth rate is relative to the input flux. This is in fact a yield (i.e.
a ratio of fluxes). Figure 5.16 makes this point very clearly.

Optimising yield or optimising rate is biologically a completely different
thing: one can be very fast at the expense of efficiency (yield), and this strategy
may win the batlle of the fittest. Under other conditions (e.g. of poor energy
resources), maximizing yield may be the best strategy. Importantly, stoichio-
metric analyses can only predict optimal yields, not a priori rates. To turn
concentrations into rates, one needs kinetics.

5.8 Sensitivity analysis

Once an FBA solution has been found, there are two types of sensitivity co-
efficients that are useful for interpretation and understanding of the metabolic
network. These are called shadow prices and reduced costs. Reduced costs are
relatively easy to understand: they quantify how much the objective function
would change if a capacity constraint is changed:

ri =
∂Z

∂bi
(5.30)

Or by differentiating with respect to ai. This is illustrated in Figure 5.17.
Obviously, reduced costs are always zero if the FBA solution does not hit

the minimal or maximal constraint, and so reduced costs indicate reactions that
are somehow constraining the objective function. In many applications, these
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Figure 5.16: 1A A stoichiometric network can be used, with FBA, for opti-
mization of maximal yield of biomass on a certain nutrient. 1B by providing
an experimentally measured input rate (capacity constraint in constraint-based
modeling terms), FBA predicts a specific growth rate. The two situations are,
however, exactly the same except for some scaling factor (indicated in bold). In
both cases, a flux distribution through the stoichiometric network will be found
that maximized the yield of biomass on the nutrient.
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Figure 5.17: Illustration of reduced costs

are input or output fluxes, e.g. the glucose input flux will often constrain the
maximal growth rate. These numbers are therefore interesting if one is interested
in medium optimisation. The other sensitivity coefficient is the shadow price:
it is the change in objective value Z if the mass-balance equation is altered. It
therefore deals with metabolites, not rates! The easiest way to think of shadow
prices is as the ”value” of a metabolite in terms of the objective value, i.e. if
one would introduce a metabolite in the medium together with a transporter
(and so tap in the metabolite for free), would it affect Z? It therefore introduces
an extra column in the stoichiometric matrix with only a ”1” at the metabolite
evaluated. This is illustrated in figure 5.18.

Exercises

1. Draw examples of different network topologies where at least 5 fluxes can
be estimated from only 2 measurements. Explore with what structure external
flux measurements do not suffice to solve the set of fluxes. 2. In Figure 5.12 a
metabolic network is shown. Assume all reactions are irreversible. - Construct
a K matrix by inspection and by linear algebra (section 5.5) and draw the flux
modes in the network. - Draw the solution space in 3D in Mathematica. - try to
maximize byproduct formation using FBA. Do you get a solution? - constrain
the network such that it becomes bounded. - calculate maximal byproduct and
biomass production under such constraints - do FVA for each optimization -
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Figure 5.18: Illustration of shadow price

a flux of v1 of 10 +/- 2 was measured, and a biomass production of 4 +/- 1.
Calculate the predicted span of the byproduct formation flux. 3. In Figure
5.19 a metabolic network is shown with parallel pathways. Assume all reactions
are irreversible. - The input flux was measured to be 10. Give the span of
each reaction in the network. - Now assume all reactions in the network are
reversible: does this affect the span? Show by computation. Explain the result
and discuss if this is realistic in real life.
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Figure 5.19: Metabolic network with parallel pathways
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Chapter 6

Biological control theory

6.1 Introduction

Cells adapt their physiological strategy upon environmental changes. This may
involve network rewiring, changes in metabolic rates, alterations in covalent-
modification levels of signaling proteins, and new sets of membrane receptors.
All these changes are induced upon perception of the environmental change and
processing by signaling, metabolic and gene networks. To some environmental
influences cells do not respond at all even though some of their processes are
sensitive to those disturbances. How can cells achieve perturbation-specific sen-
sitivity and robustness? This question has to do with the extent by which the
initial effect of a perturbation on a process rate, say a change in the level of
glucose on the rate of a glucose transporter or growth factor on the autophospho-
rylation capacity of a growth factor receptor, is propagated through the entire
molecular network to bring about a global change. Metabolic control analysis
can give insight into such network responses.

Physiological adjustments have to be carried out within strict constraints.
For instance, many reactions rely on ATP and NADH and large changes in their
levels would perturb many processes simultaneously, causing havoc. So some
concentrations have to kept within small bounds (homeostasis) despite the fact
that the flux through those pools may change by orders of magnitude. On top
of that, cells have limited internal space and energy budgets, which means that
the benefit of a physiological adaptation should at least compensate for the cost.
Another complication are trade-offs, a change in one part of the network may
enhance physiological performance while at the same time causing a reduction
in performance by another part of the network. So somehow cells are tinkered
by natural selection to achieve sophisticated constraint multi-objective control
and optimization tasks.

In this chapter, we will introduce a number of concepts and tools in the
framework of metabolic control analysis (MCA) to tackle how system proper-
ties of networks are being controlled and regulated by cells. Examples of such

103



104 CHAPTER 6. BIOLOGICAL CONTROL THEORY

systems properties are fluxes, concentrations, response times, sensitivity and
robustness. The following aspects will be addressed:

• In general, no rate-limiting reactions or master regulator exist in molecular
networks,

• Any system property is under the influence - controlled - by the activity
of all the reactions in the network,

• The extent of control that a particular reaction exerts on a system prop-
erty depend on the state of the network, all the kinetic parameters and
characterization of the environment - it is a network property itself,

• The sensitivity of reactions to their reactants and effectors determine
largely the control distribution of system properties,

• Feedback circuitry are potent mechanisms to make network (ultra-)sensitivity
and robust to changes in their environment
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Figure 6.1: Different responses of steady-state system properties of a molecular
network, i.e. a metabolic flux (J) and the covalent modification fraction of a
protein EP/(E + EP ), as function of a physiological parameter, such as an
enzyme or signal level. Networks can generate different input/output charac-
teristics depending on their structure and parameterization. Control theories
analyze how the sensitivity of system properties to parameters can be explained
in terms of network design and process parameterizations. In this way more
insight can be gained into the molecular mechanisms underlying robustness
(parameter insensitivity) and fragility (parameter sensitivity). The examples in
this plot all show stimulatory responses but the same variability can be observed
in repressive responses.

6.2 System properties

Cells change their physiological states upon external stimuli. Changes in path-
way fluxes, covalent modification levels of signaling proteins, rates of gene ex-
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pression are all responses involved in adaptive behavior. Each of these system
properties responds in a specific manner to a specific stimulus. Figure 6.1 shows
some examples of system responses.

Having made it this far into this book you will realize at this point that not
a single molecular property will explain how the dependency of network func-
tions on parameters but rather that many processes will be typically responsible
for it to varying extents. This indicates that a metabolic pathway flux, a gene
transcription rate, or the covalent modification state of a protein are each de-
pendent in some unintuitive nonlinear manner on all kinetic properties of the
enzymes, which specifies the network structures with all its branches, pathways,
and feedback circuitry. This function is not tractable in most cases.

Consider for instance the simplest pathway imaginable to illustrate some of
the concepts behind MCA (network A in figure 6.2),

S
v1

 X

v2

 P (6.1)

The linear pathway is composed out of two reversible reactions where S and
P are held fixed. For illustrative purposes, we will assume those reactions to
follow mass-action kinetics. In the next section, we consider enzyme kinetics.
The mass balance for X is now given by,

d

dt
x = v1 − v2 = k+

1 s− k−1 x− k+
2 x+ k−2 p (6.2)

At steady state, dx/dt = 0, the concentration of X, xs equals,

xs =
k+
1 s+ k−2 p

k−1 + k+
2

(6.3)

This concentration depends on all the parameters of the network, i.e.

xs = xs(k+
1 , k

−
1 , s, k

+
2 , k

−
2 , p), (6.4)

which is defined at steady state, but this functional dependency of the con-
centration of X on all parameters of the network extends to time-dependent
properties. This dependency can be understood by realizing that the steady-
state rate of both reactions depends on xs such that the pathway flux and
steady-state concentration of X depend on all kinetic and environmental pa-
rameters. In other words, the steady-state concentration and rates are defined
by the entire network, which makes them system properties!

Often the functional dependency of a system property with respect to all
the parameters of the system - the kinetic model - is not known in closed form,
as in the case of equation 6.3. Yet we can gain insight into how network cir-
cuitry and enzyme properties shape responses of system properties to changes
in parameters, such as enzyme levels, external signals and nutrients. Control
theory is particularly useful for this purpose. There exist two sorts of control
theory: engineering and biological control theory. The latter is often referred to
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as metabolic control analysis.1 Do not let the name ”metabolic” control analysis
fool you; it’s application is by now far more broad than it’s initial application.
It now covers signaling networks, gene networks, and hierarchical networks be-
sides metabolic networks. Engineering and biological control theory has much
in common. Here we will mostly outline biological control theory.

s px
A

s p1x
B

p2

s yx

C

p

D

e ep

s E

e1 e1p

s

e2 e2p

F

e1 e1p

s

e2 e2p

e3 e3p

1 2 1

1

1
1 1

2

3 32

2
2

3 3

2

4 4

5

6

Figure 6.2: Recurrent network structures in molecular networks that will be
studied with metabolic control analysis in this chapter. A. A 2-enzyme linear
pathway with reversible enzymes. B. A branched pathway with three enzymes.
C. A 3-enzyme linear pathway with feedback. D. A signal transduction cycle
composed out of a kinase and a phosphatase. E. Two signaling cycles in series.
F. Three signaling cycles in series with a negative feedback. All the reactions
in the metabolic pathways are reversible and sensitive to their reactants and
effectors. All the reactions in the signaling systems are irreversible and only
sensitive to their substrate and effectors. The sensitivities of rates to their
reactants and their effectors will be quantified with elasticity coefficients that
express the fractional change in the rate of a reaction upon a fractional change
in the concentration of a reactant or effector at a given state.

1A related theory is biochemical systems theory developed by Michael Savageau.
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6.3 The machinery of MCA: response, control
and elasticity coefficients

The coefficients of metabolic control analysis will be introduced using network
A in figure 6.2 as an example. Representative steady-state responses of such a
system to a change in the fixed pathway substrate concentration, s, are shown
in figure 6.3. The steady-state concentration of x and the steady-state flux J
increase with the concentration of s. This is not a surprise, the first enzyme can
run faster with more s. As we analyze the system in steady state, the second
enzyme needs to operate as fast as the first one. Since, this enzyme is not directly
sensitive to s, the rate of enzyme 2 can only increase if the concentration of its
substrate, x, increases. The problem becomes a bit more complicated due to the
fact that x inhibits the first enzyme through product inhibition. So the exact
levels of x depends on properties of both enzymes. It is again a system property
and so will be the flux. Without knowing the exact functional dependence of
those system properties on the concentration of s can we then still understand
the shapes of the plots in figure 6.3? Yes, we can. We can understand the slope
of these curves at every value of s in terms of enzyme properties. This is the
approach of metabolic control analysis.
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Figure 6.3: The steady state concentration of X and the steady-state flux J
for network A in figure 6.2 as function of the fixed concentration of the path-
way substrate, s. Both enzyme follow irreversible product-sensitive Michaelis-
Menten kinetics with parameters: Vmax,1 = 10 mM min−1, KM,1,s = 1 mM ,
KM,1,x = 3 mM , Vmax,2 = 50 mM min−1, and KM,2,x = 2 mM . The con-
centration of p was set to zero. Note that the subscript s of xs does not refer
to the substrate concentration of the pathway but to the fact that this is the
steady-state concentration of x rather than the time-dependent concentration
of x.

The slope in the left plot of figure 6.3 is defined for infinitesimally-small
changes in s as, ∂xs

∂s . This sensitivity coefficient is called an unscaled response
coefficient in metabolic control analysis. ”Unscaled” because in MCA we gen-



108 CHAPTER 6. BIOLOGICAL CONTROL THEORY

erally consider a response coefficient as,

Rxs
s =

∂ lnxs
∂ ln s

=
s

xs

∂xs
∂s

(6.5)

MCA related this systemic coefficient to enzyme properties. For notational
convenience we will write the steady state concentration of x, xs, simply as x.
Figure 6.3 shows that this response coefficient is not constant and depends on
s as the slope varies with s.

Since, we are interested in the sensitivity of the steady-state concentration
of x to s, we rewrite the mass balance for x at steady state with its explicit
dependence on s,

0 = v1(s, x(s))− v2(x(s)) (6.6)

This equation tells you that x depends on s and that: (i) the rate of the first
enzyme depends directly in s and indirectly through x and (ii) the rate of the
second enzyme depends only indirectly on s through its dependence on x. To
study the slope in figure 6.3, we differentiate the previous equation with respect
to s,

0 =
(
∂v1
∂s

+
∂v1
∂x

∂x

∂s
− ∂v2
∂x

∂x

∂s

)
ds (6.7)

In MCA, all derivatives are scaled using the relationship, 1
xdx = d lnx. Scaling

the previous equation then gives,

0 =
(
∂v1
∂s

+
∂v1
∂x

∂x

∂s
− ∂v2
∂x

∂x

∂s

)
ds

=
(
s

v1

∂v1
∂s

+
x

v1

∂v1
∂x

s

x1

∂x

∂s
− x

v2

∂v2
∂x

s

x

∂x

∂s

)
ds

s

=
(
∂ ln v1
∂ ln s

+
∂ ln v1
∂ lnx

∂ lnx
∂ ln s

− ∂ ln v2
∂ lnx

∂ lnx
∂ ln s

)
d ln s (6.8)

In this equation, we have two sorts of coefficients: the response coefficient we
have seen before Rxs = ∂ ln x

∂ ln s and the normalized sensitivity of a reaction rate to
either a variable reactant, ∂ ln v1

∂ ln x , or a fixed external reactant, ∂ ln v1
∂ ln s . The latter

two coefficients are termed elasticity coefficients in MCA and capture the sen-
sitivity of reactions to reactants and effectors. They are denoted by an epsilon,
e.g. εv1

x , for ∂ ln v1
∂ ln x .2 An elasticity coefficient εvi

x quantifies the fractional change
in the rate of the i-th reaction upon a fractional change in the concentration of
reactant or effector, x, when all other intermediates are held fixed at their con-
centrations of some reference state. So an elasticity coefficient is a property of
an enzyme while it operates at some state of reference, often a steady state. For
this reason it is referred to as a local property. Response coefficients capture the
fractional change in a system property upon a fractional change in a parameter

2In some literature, an elasticity coefficient to an external metabolite or fixed concentra-
tions has been termed a ’π’ elasticity, we not do this here.
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when the entire network, all concentrations, are allowed to attain a new steady
state. A response coefficient is therefore a global property, a network property.

Using the introduced terminology, equation 6.8 can be written in terms of
MCA notation,

0 = εv1
s + εv1

x R
x
s − εv2

x R
x
s (6.9)

and solved for the response coefficient,

Rxs =
−1

εv1
x − εv2

x
εv1
s (6.10)

The elasticity coefficient, εv1
s , is positive as s stimulates the first reaction. The

term −1
ε

v1
x −εv2

x
is positive as well; εv1

x < 0 (product inhibition) and εv2
x > 0 (sub-

strate activation). We will come back to the values of those elasticity coefficients
in next section.

The response coefficient relationship in equation 6.10 can be decomposed in
to the multiplication of two terms, the elasticity coefficient εv1

s and a so-far not
introduced coefficient, a so-called concentration control coefficient. A moment
of reflection on this equation will tell you that (following the rule of partial
differentiation),

∂ lnx
∂ ln v1

=
−1

εv1
x − εv2

x
(6.11)

This coefficient is called the concentration control coefficient of the first reaction
on the concentration of X, denoted by CX1 . It corresponds to the fractional
change in the steady-state concentration of X upon a fractional change in the
activity of the first reaction. Changing the activity of a reaction corresponds
to changing the forward and backward rate to the same extent as otherwise
one would alter the equilibrium constant of the process, which is not defined by
kinetics but by the thermodynamic properties of the reactants.

Thus a control coefficient is defined as a system response (of a concentration
or flux) to a perturbation of the rate of a reaction. This can be envisioned as a
perturbation of a reaction by some multiplication factor,

v1(λ) = λv1 (6.12)

at a reference value of λ = 1. At the moment λ is defined in a very general
manner; as a linear parameter that perturbs an entire reaction rate - forward
and backward rate simultaneously. In molecular networks the λ parameter can
often be thought of as the enzyme concentration; for those reactions that are not
catalyzed by enzyme complexes. This holds because for all such enzyme kinetics
the rate depends linearly on the total enzyme concentration, i.e. the V +

MAX =
k+
cate and V −MAX = k−cate. So the λ parameter is nothing mysterious. We can

now determine the effect of the rate of a reaction on system properties through
control coefficents. The control coefficient on the steady-state concentration of
X can be obtained by differentiating with respect to λ,

0 = v1(λ, xs(λ))− v2(xs(λ)) (6.13)
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and a scaling this equation,

0 =
(
∂ ln v1
∂ lnλ

+
∂ ln v1
∂ lnx

∂ lnx
∂ lnλ

− ∂ ln v2
∂ lnx

∂ lnx
∂ lnλ

)
d lnλ (6.14)

As ∂ ln v1
∂ lnλ = 1 the control coefficient ∂ ln x

∂ lnλ = ∂ ln x
∂ ln v1

= Cx1 can be solved from the
previous equation and equals,

CX1 =
−1

εv1
x − εv2

x
(6.15)

This is exactly the relationship we were searching for (equation 6.11).
In this section we have defined the main definitions of the coefficients in

MCA; elasticity, control and response coefficients. Response and control co-
efficients measure the relative change in steady-state system properties while
elasticity coefficients capture the sensitivity of reactions to reactants and ef-
fectors. What we lack is intuition and their application to recurrent network
designs of of cellular regulation. This we will train in the next sections by
studying metabolism, signaling and gene expression examples.

Exercises

1. Explain why an elasticity coefficient for a product is often negative. What
do you expect for an elasticity coefficient to a substrate, competitive in-
hibitor, and allosteric activator?

2. Make the rate characteristic for the 2-enzyme pathway described in the
legend to Figure 6.3, set s to 2 mM . A rate characteristic is obtained by
plotting the rate of the first enzyme and the second enzyme as function
of x. Verify that you predict from the rate characteristic the same steady
state as shown in the left plot of figure 6.3. Determine the elasticities
coefficients, εv1

x , εv1
s , and εv2

x . Which enzyme is more sensitive to x? De-
termine the concentration control coefficient, Cx1 . What does its value tell
you?

3. Determine the concentration control coefficient of the second reaction on
x. How does this control coefficient relate to CX1 ? Explain what you have
found.

6.4 Control coefficients for a linear pathway

In the previous section we have determined the concentration control coefficient
of the first reaction (equation 6.15). The concentration control coefficient for
the second reaction can be found in the same manner,

CX2 =
1

εv1
x − εv2

x
(6.16)
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It equals −CX1 ! It is negative for most enzyme kinetics as typically εv1
x < 0 and

εv2
x > 0. It has to be negative as it is reasonable to assume that the flux through

the pathway will increase upon the addition of more enzyme 2. This can only
be achieved at steady state if the rate of the first enzyme also increases, which
can only occur if x goes down; hence, CX2 < 0.

We have established that,

CX1 + CX2 = 0 (6.17)

The interpretation of equation 6.17 is that the two enzymes are simultaneously
increased in activity to the same extend and that the resultant change in steady
state x is zero. This we can easily understand from the mass balance of x at
steady state, v1(x) − v2(x) = 0. As a multiplication of the two rates by the
same factor, i.e. αv1(x) − αv2(x) = α0, indeed gives the same steady state
concentration of x. So there is nothing puzzling about this relationship. In fact
it extends to all steady-state concentrations irregardless of the complexity of
the molecular network,

r∑

i

C
Xj

i = 0 (6.18)

The index i runs over all reactions of which there are r in total in the network
and holds for all steady state concentrations, Xj . This equation is known as the
summation theorem for concentration control coefficients.

A more useful control coefficient for metabolic pathways is a flux control
coefficient denoted by CJk

vi
for the control coefficient of the rate of the i-th

reaction on the k-th flux. They are defined as,

d ln Jk =
∂ ln Jk
∂ ln vi

d ln vi = CJk
vi
d ln vi (6.19)

We have already concluded that,

J1 = v1(e1, x(e1)) (6.20)

As J1 = J2 = v1 = v2 at steady state we denote the flux by J . We can determine
the flux control coefficient from the differentiation of the previous equation to
e1 and scaling the resulting equation,

d ln J =
∂ ln v1
∂ ln e1

+
∂ ln v1
∂ lnx

∂ lnx
∂ ln e1

d ln e1 (6.21)

So we have,
CJ1 = εv1

e1 + εv1
x C

X
1 = 1 + εv1

x C
X
1 (6.22)

You can easily verify that εv1
e1 = 1 because v1 is a linear function of e1.3 We

have already determined the concentration control coefficient, the flux control
coefficient then becomes,

CJ1 =
−εv2

x

εv1
x − εv2

x
=

1

1− ε
v1
x

ε
v2
x

(6.23)

3Check this.
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So the first enzyme typically has a flux control coefficient larger than 0 and
below 1; as − ε

v1
x

ε
v2
x

is positive for regular kinetics.4 For the flux control coefficient
of the second enzyme we obtain,

CJ2 = εv2
e2 + εv2

x C
X
2 = 1 + εv2

x C
X
2 =

εv1
x

εv1
x − εv2

x
(6.24)

Also this control coefficient is for most enzyme kinetics positive. The observant
reader has noticed that,

CJ1 + CJ2 = 1 (6.25)

Enzyme 1 has a larger effect on the flux when its level is changed - a larger flux
control coefficient - than the second enzyme when CJ1 > 0.5 as CJ1 +CJ2 = 1 and
the CJ ’s are positive. This occurs when − ε

v1
x

ε
v2
x
< 1.5 The ratio − ε

v1
x

ε
v2
x

indicates
the ratio of the sensitivity of the first reaction for x over the sensitivity of the
second reaction for x. So the least sensitive enzyme has most flux control! This
often translated to more complicated networks.

Why do the flux control coefficients sum to 1? A similar proof as for the sum
of the concentration coefficients applies. Consider again αv1(x)− αv2(x) = α0,
it indicates that the steady state flux J increases to the same extend as the rates
where increased, that is by a factor of α. So a simultaneous change of the rates by
a factor α causes the flux to change with a factor of α too. Hence, the summation
theorem for flux control coefficients (equation 6.25). The summation theorem
for flux control coefficients can be generalized to networks of any complexity,

r∑

i

CJk
i = 1 (6.26)

Exercises

1. Determine the elasticity coefficient for the reversible Michaelis-Menten
mechanism (equation 4.30) with respect to its substate and product. Write
it as a difference between a term that contains the mass-action ratio,
Γ/Keq and one that contains the S/KS and P/KP terms. Show that close
to thermodynamic equilibrium the enzyme properties do not matter for
the value of these elasticity coefficients. In fact this is a general property
for all reversible enzyme kinetics.

2. Show that the first enzyme in a two-enzyme pathway that is not sensitive
to its product has a flux control coefficient of 1. Use the control coefficient
expression and a rate characteristic. Do you think this result is limited to
pathways of length 2 or does it apply also to larger systems?

4Explain why.
5Verify this by plotting CJ1 as function of − ε

v1
x

ε
v2
x
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3. Use the concentration and flux control coefficients derived above to vali-
date that,

CJ1 ε
v1
x + CJ2 ε

v2
x = 0

CX1 ε
v1
x + CX2 ε

v2
x = −1 (6.27)

Those are called connectivity theorems of flux and concentration control
coefficients, respectively.

4. Use the connectivity theorems (equations 6.27) to show that an enzyme
that is only sensitive to a single metabolite only controls the concentration
of that metabolite and not the flux. Such an enzyme is called a slave
enzyme. Even though you have now derived it for a 2-enzyme pathway,
this is a general result.

5. Use the summation and connectivity theorems to determine the control
coefficients! This is one of easiest ways of deriving control coefficients.

6.4.1 Summation and connectivity theorems for linear path-
ways

The connectivity theorems discovered for the 2-enzyme pathway can be extended
to any linear pathway with any number of feedback and feedforward loops,

r∑

k

CXl

k εvk

Xj
= δlj , δ

l
j = 1 if j = l else 0 (6.28)

r∑

k

CJl

k ε
vk

Xj
= 0 (6.29)

The summation theorems hold for molecular networks, including signaling and
gene networks, of any complexity,

r∑

k

CXl

k = 0 (6.30)

r∑

k

CJl

k = 1 (6.31)

For linear pathways, all summation and connectivity theorems are sufficient to
express all the control coefficients in terms of elasticity coefficients.

Exercises

1. Determine the flux control coefficients of a 3-enzyme linear pathway with-
out feedback. Do the same for the pathway displayed in 6.2C. What is
the effect of the feedback on the flux control coefficients?
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2. Which enzymes have most flux control in a 3-enzyme linear pathway if
the second enzyme is not sensitive to its product?

3. Use the connectivity theorems to show that an enzyme in any linear path-
way that is only sensitive to one metabolite only controls the concentration
of that metabolite and no other systemic property.

4. A transient time, τi, is defined as the concentration of a metabolite di-
vided by the flux through that metabolite; all at steady state. Derive
the summation and connectivity theorems for transient times for linear
pathways.

6.5 A branched pathway: one robust branch and
the other highly sensitive

6.5.1 Control coefficients

Consider figure 6.2B, it displays a three-enzyme metabolic pathway with a
branch. Using the by-now-familiar approach of differentiation we can obtain
the concentration control coefficient of the first enzyme on x and then subse-
quently the flux control coefficient. Let’s start with the concentration control
coefficient. We have the following functional relationship at steady state as a
result of the mass balance,

0 = v1(e1, x(e1))− v2(x(e1))− v3(x(e1)) (6.32)

We can take the derivative of this equation to x,

0 =
∂v1
∂e1

+
∂v1
∂x

∂x

∂e1
− ∂v2
∂x

∂x

∂e1
− ∂v3
∂x

∂x

∂e1
(6.33)

and scale it,

0 = v1
∂ ln v1
∂ ln e1

+ v1
∂ ln v1
∂ lnx

∂ lnx
∂ ln e1

− v2
∂ ln v2
∂ lnx

∂ lnx
∂ ln e1

− v3
∂ ln v3
∂ lnx

∂ lnx
∂ ln e1

(6.34)

As these rates are all steady-state rates, we will denote them as fluxes, J ’s.
After having recognized the elasticity coefficients and the concentration control
coefficient, we can solve for the concentration control coefficient,

CX1 =
−1

εv1
x − J2

J1
εv2
x − J3

J1
εv3
x

(6.35)

Here we have used εv1
e1 = 1. One should realize that at steady-state, J1 = J2+J3.

This equation is the same as equation 6.15 if we consider,

J2

J1
εv2
x +

J3

J1
εv3
x (6.36)
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as an overall elasticity coefficient for the degrading reactions of x. So from the
perspective of the control of the first reaction on the concentration of x it does
not matter how many consuming reactions of x occur.

The flux control coefficient can be obtained again through equation 6.22.
Rewriting the result gives,

CJ1 =
−J2
J1
εv2
x + J3

J1
εv3
x

εv1
x −

(
J2
J1
εv2
x + J3

J1
εv3
x

) (6.37)

This equation shows that the control coefficient no longer only depends on the
elasticity coefficients but in addition on the flux ratio’s. This has an interesting
consequences as we shall see in the next section.

6.5.2 Low-flux branches and branch point control

The flux control coefficient of the second reaction on the third is given by,6

CJ3
2 =

−1
J3
J2

+ ε
v2
X

ε
v3
X

− J1ε
v1
X

J2ε
v3
X

(6.38)

This equation has a few interesting properties. If enzyme 2 is saturated with x
such that εv2

X ≈ 0 and the third enzyme has an elasticity coefficient of ≈ 1 for
x, we obtain,

CJ3
2 ≈

−J2

J3 + J1|εv1
X |

(6.39)

You may wonder whether these conditions are exotic. They are for many
branches actually quite realistic [36, 25]. Consider a branch point where the
branching is regulated by the KM ’s of the enzyme after the branch point; en-
zyme 2 and 3. The conditions we are considering corresponds to the case where
the high-affinity branch enzyme is saturated at a level of the branch metabo-
lite that equals the KM of the low affinity enzyme. This equation illustrates
that only the branch fluxes and the elasticity coefficient of the first enzyme now
determine the control coefficient.

If, in addition, εv1
X is small, which can easily happen, the control coefficient

becomes
CJ3

2 ≈ −J2/J3 (6.40)

This control coefficient can become much larger than 1 if the flux through the
branch with enzyme 3 is small (then: J1 ≈ J2). So the major pathway has a
large control on the flux through the minor pathway. (Interesting information for
a biotechnologist!) Otherwise, i.e. εv1

X ≈ −1 and J1 ≈ J2, the equation reduces
to CJ3

2 ≈ −1. Alternatively, if none of the elasticity coefficient conditions hold
but J3 is much smaller than J2, the flux control coefficient becomes,

CJ3
2 ≈

εv3
X

εv2
X + |εv1

X |
(6.41)

6Equate this yourself if you wish
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Under this condition, enzyme 3 does not control the concentration of X and
therefore also not the flux through enzyme 1 and 2.7 The branch with the
large flux has become ignorant of the small branch. The small branch has
become a slave of the large flux pathway, it becomes very sensitive to it when
it has the highest sensitivity to the concentration of the branch metabolite X.
This is relevant for the production of the production of relevant metabolites for
biotechnology such as flavour compounds that typically branch from pathways
in central metabolism carrying major fluxes.

Exercise

Show that if J1 ≈ J2 the small branch does not control the concentration of
X and therefore it does not control the flux through J1 and J2. Plot the
control coefficient CJ3

2 as function of the ratio εv2
x /ε

v3
x for various values of the

ratio εv2
x /ε

v3
x . Consider cases such J3 << J2. Under what conditions becomes

CJ3
2 < −1? This phenomenon is called branch-point ultrasensitivity.

6.6 A metabolic pathway with negative feed-
back: homeostasis

We will study in this section network C in figure 6.2. Using the summation and
connectivity theorems for flux control,

CJ1 + CJ2 + CJ3 = 1
CJ1 ε

v1
x + CJ2 ε

v2
x = 0

CJ1 ε
v1
y + CJ2 ε

v2
y + CJ3 ε

v3
y = 0

we can solve for all the flux control coefficients in terms of the elasticity coeffi-
cients. The expression of the flux control coefficient of the third enzyme then
becomes,

CJ3 =
εv1
x1
εv2
x2
− εv1

x2
εv2
x1

εv1
x2ε

v2
x1 − εv1

x1ε
v2
x2 + εv1

x1ε
v3
x2 − εv2

x1ε
v3
x2

(6.42)

We will analyze the consequences of the feedback strength (−εv1
x2

) in this section.
This we do in a more transparent fashion when we consider the product inhibi-
tion of the x1 on enzyme 1 to be negligible, εv1

x1
≈ 0; the flux control coefficient

then equals,

CJ3 =
εv1
x2

εv2
x1 − εv3

x2

(6.43)

Given the signs of all the elasticity coefficient this flux control coefficient will
be positive, indicating that an increase in the rate of enzyme 3 will lead to a
higher flux in the new steady state. Assuming that εv1

x1
≈ 0 is not unrealistic.

For many pathways equiped with negative feedback on the first reaction it is
known that the first reaction is often irreversible and has a low affinity for the

7Do you understand why?
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Figure 6.4: Analysis of the consequence of negative feedback for the flux control
of metabolic pathways (network C in figure 6.2). In the upper left figure the log-
log rate characteristic is plotted of the metabolic segment (supply) composed
out of enzyme 1 and 2 (blue line) and three rate curves for the third enzyme,
which differ in the maximal rate of the third enzyme (values 0.2, 10, and 250).
When this maximal rate is between 0.2 and 250 the steady state lies in the steep
region of the rate curve for the supply block. The right upper figure indicates
that in this parameter region the dependency between the steady-state flux and
maximal activity of the third enzyme is plotted on doubly logarithmic axes.
The slope in this curve is the flux control coefficient of the third enzyme, which
is for a large range of maximal rate values of the third enzyme constant. This is
also shown in the left lower figure. The lower figure on the right indicates that
strong feedback inhibition shifts the control to the last enzyme in the pathway.

product, a high KM [17, 16]. This last equation illustrates that if the negative
feedback is strong, i.e. −εv1

x2
is high, the control shifts to the last enzyme.

But what about the control of the second enzyme - since, all the flux control
coefficients sum to 1? The metabolite x1 only influences the second enzyme with
a strength of εv2

x1
. Given the connectivity theorems for x1, that since εv1

x1
≈ 0

simplify to: CJv2
εv2
x1

= 0, Cx1
v2
εv2
x1

= −1 and Cx2
v2
εv2
x1

= 0, indicate that CJv2
= 0,

Cx1
v2

= −1/εv2
x1

, and Cx2
v2

= 0. A metabolite that is only sensed by a single
enzyme is called a slave metabolite and only control the concentration of that
metabolite and nothing else [35]. Since, CJv2

= 0 the flux control is distributed
between enzyme 1 and 2. If εv1

x1
6= 0 then the flux control is distributed between

all three enzymes.
The previous equations have already suggested that the flux control of the
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third enzyme increasing with the feedback strength. This is illustrated in figure
6.4 where the metabolic pathway displayed in figure 6.2C was modelled with
reversible Hill kinetics for the first enzyme and reversible Michaelis-Menten ki-
netics for the other enzymes. As long as the steady state of the metabolic
pathway occurs at a concentration of x2 to which the metabolic segment com-
posed out of enzyme 1 and 2 is really sensitive the flux control lies predominantly
in the third reaction. We drew a related conclusion at the end of Chapter 4.

6.7 Ultrasensitivity of signaling networks

6.7.1 A single covalent modification cycle

Figure 6.2D shows an enzyme E that is covalently modified, e.g. phosphory-
lated, by a dedicated enzyme, e.g. a kinase, into EP and the reverse reaction
is catalyzed by another dedicated enzyme, e.g. a phosphatase. Alternatively,
the covalent modification may involve ubiquitination, methylation, acetylation,
or adenylylation. Note that kinase reaction involves the hydrolysis of ATP into
ADP and the transfer of the phosphate to E. The phosphatase reaction liber-
ates the phosphate in the form of inorganic phosphate. In Chapter 4 we already
briefly studied this system and concluded that this network can display ver-
satile steady-state input-output relationship between the activity of the kinase
and the steady-state level of EP . The biological function of this network is to
transduce information. Typically, information about the presence and concen-
tration of a signaling molecule, S, that either acts on the kinetics of the kinase,
phosphatase or both. The left plot in figure 6.1 and figure shows a number
of input and output characteristics ranging from hyperbolic to sigmoidal and
switch-like. Similar plots and the sensitivity of the steady-state of the cycle to
the activity of the kinase is shown in figure 6.5. The slopes in those curves can
be studied with metabolic control analysis.

To derive the sensitivity of steady-state EP as function of the activity of the
kinase, which we consider modulated by a signal concentration, we have to start
with the steady state mass balance (we consider product independent kinetics
of the kinase and phosphatase),

0 = vk(Vk, e(Vk))− vp(ep(Vk)) (6.44)

In this equation vk(Vk, e(Vk)) and vp(ep(Vk) denote the rate equation for the
kinase and phosphatase and their dependencies on the maximal rate of the
kinase Vk and the concentrations of the unphosphorylated and phosphorylated
enzyme. We can take the derivative of this equation to Vk,

0 =
∂vk
∂Vk

+
∂vk
∂e

∂e

∂Vk
− ∂vp
∂ep

∂ep

∂Vk
(6.45)

Since e+ ep is conserved, we have ∂e/∂Vk = −∂ep/∂Vk,

0 =
∂vk
∂Vk

− ∂vk
∂e

∂ep

∂Vk
− ∂vp
∂ep

∂ep

∂Vk
(6.46)
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Figure 6.5: Input-output relationship and the sensitivity of a signaling cycle
composed out of a kinase and a phosphatase and another enzyme as substrate
(network D in figure 6.2). The kinetics was modelled with irreversible Michaelis-
Menten kinetics (KM,kinase = 1,KM,phosphatase = 1, and VMAX,phosphatase = 1).
In the left plot the input-output relationship is shown as the steady-state phos-
phorylated fraction as function of the kinase maximal activity. The different
lines in the two plots correspond to different total enzyme level (E+EP; 0.5,
5, 15, and 40). Higher concentrations give more sigmoidal input-output rela-
tionships. In the right plot, the concentration control coefficient of the kinase
on the phosphorylated enzyme concentration is shown, which correspond to the
normalized slope in the left plot, ∂ lnEP/∂ lnVMAX,kinase. The maximal rate
of the kinase was varied to simulate the action of a signal on this activity. The
input-output relationship of the phosphorylation fraction with respect to the
signal concentration can then even be steeper than what is shown in the left
plot. This occurs when εvkinase

signal > 1; for instance, when the kinase is a coopera-
tive enzyme.

MCA requires the normalization of those derivatives,

0 =
∂ ln vk
∂ lnVk

− ∂ ln vk
∂ ln e

ep

e

∂ ln ep
∂ lnVk

− ∂ ln vp
∂ ln ep

∂ ln ep
∂ lnVk

(6.47)

In terms of MCA those normalized derivatives become,

0 = εvk

Vk
− εvk

e

ep

e
Cepvk
− εvp

ep

ep

e
Cepvk

(6.48)

As the rate of the kinase depends linearly on its maximal rate, εvk

Vk
= 1 and we

obtain for the concentration control coefficient of the kinase on EP ,

Cepvk
=

1
εvk
e
ep
e + ε

vp
ep

(6.49)

This coefficient is the scaled slope ∂ep/∂Vk · Vk/ep of the left plot of figure 6.5.
It becomes larger than 1 when the two elasticity coefficients are small. They
are small when the kinase and phosphatase are saturated with their substrate.
This typically occurs when the total enzyme concentration, e+ ep, exceeds the
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sum of the KM ’s of the kinase and the phosphatase. This agrees with the
results in figure 6.5 as the sigmoidality and sensitivity increase with the total
enzyme concentration. The response coefficient of the phosphorylated enzyme
concentration, ep, to a signal concentration acting on the kinase can be equated
in terms of a control coefficient and an elasticity coefficient as,

Reps = Cepvk
εvk
s (6.50)

This equation illustrates that the dependency of steady-state ep and s can be
steeper or shallower than the dependency of steady-state ep on Vk depending
on the elasticity coefficient of the kinase for the signal. When the value of
this response coefficients exceeds a signaling cycle displays ultra-sensitivity; it
amplifies a change in its input to a large change in its output [23, 11, 3].

6.7.2 A signaling cascade: sensitivity amplification

Equation 6.50 has an interesting consequence. In many cases, signaling cycles as
treated in the previous section occur in linear cascades, a well-known example is
the MAPK pathway (figure 1.5; and 6.2E). In a cascade the kinase of a signaling
cycle is the output, the phoshorylated enzyme, of the previous cycle. So for a
cascade of length three we obtain,

Re1ps = Ce1pvk,1
ε
vk,1
s

Re2pep1
= Ce2pvk,2

ε
vk,2
e1p

Re3pep2
= Ce3pvk,3

ε
vk,3
e2p

(6.51)

As the kinase of cycle 2 and 3 are the previous phosphorylated enzyme species,
i.e. e1p and e2p, and the kinase activity depends linearly on the concentration
of those species, εvk,2

e1p = ε
vk,3
e2p = 1. So the sensitivity of the last phosphorylated

enzyme, e3p, to S is given by,

Re3ps = Re3pe2pR
e2p
e1pR

e1p
s (6.52)

This equation shows the phenomenon of sensitivity amplification. If each cycle
is ultrasensitive, the sensitivity of the output of the entire cascade to its input
is higher than any of its components’ sensitivity [4, 5, 22].

6.7.3 Signaling cascades with feedback

In the previous section, we illustrated the occurrence of sensitivity amplification
along a signaling cascade. Often, feedbacks occur in signaling cascades. As a
consequence the sensitivity of a signaling cycle to its input in isolation of the
network can be different than with is embedded in the network because of its
output eventually modulates its input. This means we have to distinguish the
sensitivity of a signaling cycle in isolation from its sensitivity in the network.
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Figure 6.6: Sensitivity amplification of a signaling cascade composed out of a
linear chain of signaling cycles. Each of the signaling was modeled in the same
way, each has the blue input/output characteristic. The output of the second
cycle, EP2/(EP2 + E2) (red line), is more sensitive to a change in the activity
of first kinase (at the top of the signaling cascade) and the first cycle and less
sensitive than the third (brown line).

In the last section, this was not necessary as we considered a cascade without
feedback. We will now consider the network shown in figure 6.2F; a signaling
cascade composed out of three levels and a feedback from the output to the
input. At steady state the functional dependencies of the concentrations on
each others is given by,

e1p = e1p(e3p, s)
e2p = e2p(e1p)
e3p = e3p(e2p) (6.53)

These equations may appear a bit strange to you they show that at steady state
the concentration of e1p, as a solution of its steady state mass balance, depends
on e3p and s, e.g.

0 = Vmax,1 ·
KD

KD + e3p
· s

Ks + s
· e1,total − e1p
e1,total − e1p+Kk,1

− VMAX,ph,1 ·
e1p

Kph + e1p
(6.54)

Here the first term gives the rate equation for the kinase of e1, with maximal rate
Vmax,1! The activity of this kinase depends on s and e1 (e1,total − e1p). But in
addition to e3p as an inhibitor; here we modelled it such that e3p and the kinase
of e1 can form a complex with dissociation constant KD and the complexed
kinase has no activity. If we solve e1p from this equation we conclude that the
dependency, e1p = e1p(e3p, s), is indeed correct. The other dependencies can
be understood in similar ways. A change in the level of the signal, s, will bring
about a change in the steady state level of e1p, which brings about a change in
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e2p, that effects e3p, that feedback to e1p; see we have,

de1p =
∂e1p

∂e3p
de3p+

∂e1p

∂s
ds

de2p =
∂e2p

∂e1p
de1p

de3p =
∂e3p

∂e2p
de2p (6.55)

We can normalize those derivatives again and divide by d ln s,

d ln e1p
d ln s

=
∂ ln e1p
∂ ln e3p

d ln e3p
d ln s

+
∂ ln e1p
∂ ln s

d ln e2p
d ln s

=
∂ ln e2p
∂ ln e1p

d ln e1p
d ln s

d ln e3p
d ln s

=
∂ ln e3p
∂ ln e2p

d ln e2p
d ln s

(6.56)

All the d ln eip/d ln s factors are (global) response coefficients, Reip
s . The partial

derivatives we have not encountered before, those we will terms local response
coefficients, denoted by rXY = ∂ lnX/∂ lnY . The term ”local” refers to the
fact that those response coefficients only denote the response at the level of a
single signaling unit, not at the level of entire network circuit that is captured
by the response coefficients, Reip

s . With those definitions the previous equation
becomes,

Re1ps = re1pe3pR
e3p
s + re1ps

Re2ps = re2pe1pR
e1p
s

Re3ps = re3pe2pR
e2p
s

With those equations we can express the response coefficients at the level of
the entire network, the R’s, in terms of the response properties of its signaling
components, the r’s. We obtain then for the sensitivity of the output of the
signaling network, e3p to s,

Re3ps =
re3pe2pr

e2p
e1pr

e1p
s

1− re3pe2pr
e2p
e1pr

e1p
e3p

(6.57)

This equation illustrates that the response of the cascade without the feedback
loop, i.e. re3pe2pr

e2p
e1pr

e1p
s , is reduced by the feedback strength of the entire loop

re3pe2pr
e2p
e1pr

e1p
e3p. Note that re1pe3p < 0 for a negative feedback loop, the phosphoryla-

tion level of e1p is reduced upon a increase in e3p.



Chapter 7

Dynamics of molecular
systems

7.1 Stability of steady states

So far, we have considered how the changes in the concentrations of molecules in-
side cells can be expressed in terms of reactions rates and how those rates depend
in turn on concentrations of molecules and kinetic rate constants. We have con-
sidered enzyme and massaction kinetics. We have concluded that steady states
are often stable states and limited ourselves to the study of these systems. We
came to this conclusion by considering a single variable system as an example.
We considered a single molecule X and plotted in the same figure it’s rate of
synthesis and degradation, resp. vs and vd, as function of the concentration of
X, denoted by x. The intersection of the rate curves then indicated a steady
state. We denote the steady state concentration of X at this intersection by xs,
thus we have vs(xs) = vd(xs). We concluded that this steady state was stable if
two conditions were met: i. for x < xs, we required vs > vd and ii. for x > xs,
we required vs < vd. Both conditions make sure that the systems evolves in the
direction of xs.

Exercise

Sketch the plot that was described in the previous paragraph and make sure
you understand it.

We will now write those conditions for stability in more mathematical terms
to be able to work with more complicated models later and to have a proper
measure for (in-)stability. The dynamics of X is described by,

dx

dt
= vs(x)− vd(x) (7.1)

123
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We are interested in figuring out what happens to the concentration of X when
it is perturbed slightly from its steady state value, xs, by a value δx. If after
some time it returns to xs we call the steady state stable and otherwise unstable.
So we want to know how

d(xs + δx)
dt

(7.2)

evolves, i.e. whether it converges to zero (stability) or not (instability).
Here the definition of a derivative comes to the rescue, for small enough

values of δx, this definition states,

f(x+ δx)− f(x)
δx

≈ ∂f

∂x

and therefore,

f(x+ δx) ≈ f(x) +
∂f

∂x
δx (7.3)

By following this logic, and taking dxs/dt as our f(x), we obtain for equation
7.2,

d(xs + δx)
dt

=
dxs
dt

+
∂

∂x

dxs
dt

= 0 +
(
∂vs
∂x
− ∂vd

∂x

)
δx (7.4)

Since, d(xs+δx)
dt = dxs

dt + dδx
dt = 0 + δx

dt we get,

dδx

dt
=
(
∂vs
∂x
− ∂vd

∂x

)
δx (7.5)

This is a linear differential equation and can be solved for δx(t) as function of
time. We denote ∂vs

∂x − ∂vd

∂x by λ. To understand the concept of λ as a stability
measure we solve the previous differential equation,

dδx

δx
= λdt

∫ δx(t)

δx(0)

dδx

δx
=

∫ t

0

λdt

ln δx(t)− ln δx(0) = λt

δx(t) = δx(0)eλt (7.6)

From the last equation you can see that the perturbation, i.e. the applied δx(0),
dies out if and only if λ = ∂vs

∂x − ∂vd

∂x < 0; because eλt converges to 0 if λ < 0 for
large enough times! And this will be very often the case when you consider the
signs of ∂vs

∂x and ∂vd

∂x , which are typically negative and positive, respectively, for
realistic rate equations. In mathematics, the λ parameter is called an eigenvalue.

Steady states can become unstable upon a change in a parameter. A location
in parameter space where a steady state becomes unstable is an example of a
bifurcation point. When a steady state becomes unstable several phenomena
can occur. We will consider two such phenomena: i. the system jumps to
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a distant steady state (saddle-node bifurcation; associated with bistability) or
ii. the system starts to display regular oscillations (Hopf bifurcation). We will
start with studying bistable systems. Bistability is often associated with systems
that have a positive feedback loop whereas oscillations typically involve negative
feedback.

Exercise

1. Explain in terms of the sketch of the previous exercise that the condition
of λ < 0 makes sense for stability. And explain why ∂vs

∂x is often negative
and why ∂vd

∂x is often positive for realistic rate equations (mass action and
enzyme kinetics).

2. Determine whether the following systems have a stable steady state. De-
termine also the steady state concentration of X. You can use Mathemat-
ica or do it by hand.

• dx
dt = k+

1 s− k−1 x− (k+
2 x− k−2 p) with the k+’s as 10 and k−’s as 1, s

equals 10 and p equals 1.
• dx

dt = 1
1+x − x

1+x

• dx
dt = 100(1−x/10)

1+3+x − x
1+x+2 (By the way, what kind of kinetics do these

rate equations suggest?)

3. Consider the following system dx
dt = 5 +

20x5

1 + x5
︸ ︷︷ ︸
synthesis rate

− 15x︸︷︷︸
degradation rate

. This one

is a bit more complicated. Plot in Mathematica the synthesis and the
degradation rates as function of the x. How many intersections do you
count? Those are steady states. Which of those are stable and which are
unstable?

4. Consider again dx
dt = vs(x)− vd(x):

• Does strong product inhibition make the system more stable or less
stable?

• Can a system with product inhibition and substrate activation be-
come unstable?

• Can a system with product activation and substrate activation be-
come unstable?

• Can a system with product inhibition and substrate inhibition be-
come unstable?

5. Consider equations 7.6, does a system with a more negative λ return to
steady state faster or slower than one with a larger (but also negative) λ
value?

6. What happens to δx(t) as a function of time for a system with a positive
λ and what happens in the case of a negative λ?
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7.2 Bistable dynamics of single-variable systems

Bistability is a phenomenon which occurs very often in cell biology, it has been
found in various signaling and gene networks. For instance in the MAPK path-
way in oocytes, the galactose regulon in yeast, and in the lac operon in E. coli.
It is often associated with systems that have a positive feedback. Bistability ap-
pears a bit counterintuitive at first sight but it is not very hard to understand
it in terms of a mathematical model. We will explain it in this section.

Figure 7.1 show a simple model with autocatalytic synthesis and linear degra-
dation of some molecular species. This model could for instance model a tran-
scription factor, which activates the transcription of its own mRNA. The net
transcription rate is modeled as the sum of a basal rate and the influence of the
transcription factor on transcription, i.e. 5 + 20x5

1+x5 , and the degradation is first
order, i.e. 15x (indicating that per unit time 15 mRNAs are degraded),

dx

dt
= 5 +

20x5

1 + x5
︸ ︷︷ ︸
synthesis rate

− 15x︸︷︷︸
degradation rate

(7.7)

This system is capable of generating three steady states: two are stable and one
is unstable.

Let’s first determine the steady states of this system (equation 7.7). This
means we have to solve,

0 = 5 +
20x5

1 + x5
− 15x

for x. This is a frustrating exercise by hand, so we use the Mathematica function
Solve and select only the positive solutions (i.e. those values of x that correspond
to the intersections with the dx/dt = 0 axis in Figure 7.1). You will then find
0.34, 1, and 1.52 (Hint: do this yourself).

The question now is which of those steady states are stable? A graphical
explanation is given in the legend to Figure 7.1: simply from the sign of dx/dt
right and left from a steady state you can determine whether the state is attract-
ing (stable) or expelling (unstable). But we can also calculate the eigenvalue
and determine its sign. This means we have to determine,

λ =
∂

∂x

(
5 +

20x5

1 + x5

)
− ∂

∂x
15x (7.8)

This you can with the derivative function (D) in Mathematica; this gives (test
this!),

λ = −15− 100x9

(1 + x5)2
+

100x4

1 + x5
(7.9)

To determine whether the steady state xs = 0.34 is stable we computed the λ
for this value of x, which gives: -13.7. So this state is stable, λ is negative. For
xs = 1, we find λ = 10. This is an unstable steady state! The last steady state
is stable because it gives λ = −8.6.
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Figure 7.1: Explanation of bistability. We consider a system that has au-
tocatalytic synthesis and linear degradation. In A the rates of synthesis (red
line) and degradation (blue line) are drawn as function of x. Three intersec-
tions occur labelled 1, 2, and 3 and those are the steady states of system. The
closed circles denote stable steady states and the open circle denote an unsta-
ble steady state. In B the explanation of the stability properties of the steady
states is given. On the basis of the three steady states we distinguish four re-
gions labelled I to IV. In region I: vs > vd (which can be seen from plot A)
and therefore the concentration of x will rise until vs = vd (steady state 1); in
region II: the concentration of x drops because vs < vd until vs = vd (steady
state 1); in region III: the concentration of x rises again until vs = vd (at steady
state 3) and finally in region IV: the concentration drops until steady state 3 is
reached. This means that steady state 2 is propelling and is never reached, so
it is unstable.
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Exercises

1. Suppose a synthesis rate of x is inhibited by x as 1
1+x . What should the

shape of the degradation function be to make the system bistable? How
would you call such kinetics? Is it realistic? Which steady state would be
stable and which ones would be unstable? Use the graphical method to
decide this.

2. Take again the model from Figure 7.1 and take it as an example of tran-
scription model. Suppose now that a second transcription regulator, y,
influences the maximal influence of x on its own transcription rate, i.e.
the factor 20 in the synthesis rate of x. Suppose the dependency is is like
this, vs = 5 +y x5

1+x5 . Investigate in Mathematica the influence of y on the
number of steady states. Describe what happens do you find steady state
with high values of x, low values of x, or both? Or does this depend on
the exact concentration of the second transcription regulator y?

7.2.1 Emergence and disappearance of bistability as func-
tion of a parameter

Not all systems with a positive feedback will be bistable. The feedback only
suggests the possibility for bistability. This means we can control the emergence
of bistability with kinetic parameters! This is what this subsection is all about.
The parameter we will consider is the affinity of the synthesis process for the x,
which we denote with K,

dx

dt
= 5 +

20x5

K5 + x5
− 15x (7.10)

In the previous sections, K was chosen as 1. A higher K value means a lower
affinity and a lower K a higher affinity. In figure 7.2, we decrease and increase
the affinity constant and find that the bistability disappears; only a single steady
state is now possible. The synthesis rate curve is either shifted to the left or the
right, which in both cases forces a single intersection with the degradation rate
curve. This indicated that the number of steady states changes as function of K!
This we show in Figure 7.3 in a so-called bifurcation plot. These kinds of plots
are very informative and can be experimentally measured (Van Oudenaarden
Lac operon, Gal regulon; and Ferrell/Oocytes). Depending on the parameters
S or Sshaped curves can be found. Note that for complicated systems with
a lot more variables bistability remains qualitatively the same behavior as it
was discussed in this section. Calculation of the bifurcation diagrams is then
often a bit more involved and then researchers often resort to dedicated software
such as Auto and XPaut. With a little effort a continuation algorithm can be
programmed in Mathematica that does parameter scans and make S/ S-shaped
bifurcation curves.
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Figure 7.2: Emergence and disappearance of bistability as function of a
parameter. This plot refers to the same model as analyzed in figure 7.1. Here
we consider three different positive feedback strengths of x on its own synthesis
rate - the two dashed lines. We modulate the feedback strength by changing
the affinity of the synthesis process for x, i.e. the 1 in equation 7.7. The
observant reader will note that the 1 in fact corresponds to the affinity raised
to the 5-th power as we are considering Hill kinetics. But this does not change
our argumentation. The light red dashed curve, has an affinity parameter 0.05
whereas the other dashed line has value 3; a stronger and weaker feedback,
respectively. As a result of those parameter changes the number of possible
steady state has shifted from 3 to 1. Note that in the two cases different steady
state of x will be reached.
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Figure 7.3: A bifurcation diagram indicating bistability. For different
values of the feedback parameter K the steady state were determined. Each
steady state was checked for stability: stable steady state are denoted by the
blue line and unstable steady state are denoted by the purple line. As function
of K, the system starts in a monostable region, then enters a bistable region
through a bifurcation (a so-called saddle-node bifurcation) at a critical value for
K, and a monostable region again follows after a saddle-node bifurcation at a
second critical parameter value of K.

7.2.2 Bistability as a mechanism for memory

What are the benefits that bistability offers for cells? It has at least two ad-
vantages for living cells. Firstly, it is a mechanism for a population of cells
to generate two subpopulations: one in the high state and another in the low
steady state. But you can then ask yourself, how can this happen? Shouldn’t
all cells have the same kinetic parameters and therefore be in the same state?
If cells would behave deterministically you would be right but cells often do
not. We will not discuss this in great depth now but cells have the tendency
to carry out signaling and gene-regulation processes at low concentrations of
the participating molecules such that these processes have a strong stochastic
component. This stochasticity causes cells with the same genome and growth
history to function differently and end up in a different steady state when the
system is bistable. For experimental examples, see the Lac Operon work by Van
Oudenaarden or the sporulation switch in Bacillus subtilis. Secondly, bistability
gives some memory of previous events. This is a deterministic property and can
therefore be illustrated with differential equations. This we will be explained
next.

So memory, where does that come from? Consider again Figure 7.3 and
imagine that we slowly increase the value of the parameter K. This means we
start in a high-steady state value for xs and that it slowly decreases. At the
bifurcation point, the system jumps to the lower steady state branch and enters
the monostable region on the right. Now we decrease the parameter K and we
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Figure 7.4: Illustration of hysteresis (memory). Bistable systems can have
different states for the set of parameters depending on their history. This is
illustrated in this figure where the dynamics of X is simulated upon a stepwise
decrease of K followed by a stepwise decrease in this parameter. This figure can
be understood if figure 7.3 is taking into account because the systems ”walks”
over this S-curve from left to right in this simulation. As you can see depending
on the history the system reaches different steady states at K values 0.6 and
1.1. It depends whether the system came from a high or low steady state value
for x.

remain on the lower branch of steady states until we hit the other bifurcation
point; see Figure 7.4. This means that depending on the history, i.e. starting a
high or a low value of K, the state of the system is different! This is memory!
(Also sometimes referred to as hysteresis.) This is intriguing isn’t it? We have
created a simple molecular network with memory. In synthetic biology such
devices have been constructed as well, Gardner Nature.

Exercises

Joost, enkele op basis van de snijers? Laat ze dan eerst de G functie zelf even
afleiden, die kennen ze nog niet.

7.3 Stability of two variable systems

So far, we have only considered systems with a single variable concentration.
Some of you may think that those are not the most realistic systems but this
is not always true. Especially in gene networks those systems can be relevant;
a bunch of genes can be under the control of a single transcription factor with
auto-regulatory behavior leading to bistability (an example is the lac operon in
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Escherichia coli).
Another dynamic behavior often found in biological systems is oscillations

and to understand this dynamics we have to consider minimally two variables.
To understand the stability of steady state of systems with two variables we can
again consider the signs of eigenvalues but this we will postpone for later. For
we will start with a simpler approach called phase plane analysis.

7.4 Phase plane analysis for two variable dy-
namic systems

Phase-plane analysis is a useful graphical method to determine the number of
steady states, their stability properties, and whether oscillations or bistability
can occur in the system.

To introduce phase-plane analysis, we start with a general description of the
dynamics of a two-variable dynamic system,

dx

dt
= f(x, y)

dy

dt
= g(x, y) (7.11)

Here f(x, y) contains rate equations, i.e. the net rate of synthesis of x as function
of x and y minus the net degradation rate of x as function of x and y. The same
applies for g(x, y). So nothing new.

A specific example is the dynamic description of the following chemical re-
action system. The reactions are1,

A
v1

 X

B
v2→ Y

2X + Y
v3→ 3X (7.12)

We consider the concentration of A and B fixed and the mass balances for X
and Y are now given by,

dx

dt
= k+

1 a− k−1 x+ k3x
2y = f(x, y)

dy

dt
= k2b− k3x

2y = g(x, y) (7.13)

We choose this example as it has a minimal mathematical complexity, which
allows us to focus more on the essence of the phase plane approach.

At steady state, when x = xs and y = ys both of these equations are zero
by definition,

0 = f(xs, ys)
0 = g(xs, ys) (7.14)

1This section follows closely a section in Mathematical Biology by J D Murray



7.4. PHASE PLANE ANALYSIS FOR TWO VARIABLE DYNAMIC SYSTEMS133

This means that in the (x, y)-plane the two lines defined by f(x, y) = 0 and
g(x, y) = 0 intersect at steady states. These two lines are called nullclines.
Multiple intersections between the nullclines can occur, which indicates the
occurrence of bistability for example. This (x, y)-plane is called the phase plane.

For our explicit example setting the equations 7.13 to zero allows us to solve
for the steady state concentration of X and Y , those are (I used Mathematica
to find those),

xs =
ak+

1 + bk2

k−1

ys =
k2b(k−1 )2

(ak+
1 + bk2)2k3

(7.15)

This means only a single intersection in the phase plane occur for the chemical
reaction system.

For every (x, y) point in the phase plane (dx/dt, dy/dt) will have a value
and ”point” in a direction: x and y can go up or down and remain fixed at
the steady state. This means that if we start in state (3, 4) (i.e. where x = 3,
y = 4) then after some time δt we are in state (3 + dx

dt δt, 4 + dy
dt δt), which is

a new point in the plane at which new values for (dx/dt, dy/dt) hold, which
define a new direction, etc. You get the picture: the dynamics of the system -
sometimes called ”flow” - can be visualized onto the (x, y)-plane, the so-called
phase plane. After long enough times, the system may end up in a point where
(dx/dt, dy/dt) equals (0, 0) and then the system is stuck in a stable steady state.
If may also happen that the system is initially attracted to a state and then
expelled, etc. Or else, the system never settles on a steady state, but ends up
circling around a state. Then the system oscillates as function of time and it is
said to have settled on a ”limit cycle”. A limit cycle means that after a time
limit (i.e. long enough times) the system cycles (=oscillates). A stable steady
state is sometimes called a fixed point.2

We will now return to our example system and study its phase plane char-
acteristics and the associated dynamics of x and y. First we need to determine
the nullclines for this specific example. This means we have to set equations

2Clearly oscillations are periodic (with one or more frequencies). Dynamics can also occur
that is not periodic and therefore never returns to the same state. If it would return to
a state the system has visited before the system would again display the dynamics of the
intervening period because the system is deterministic (for every (x, y, z) state exists only one
(dx/dt, dy/dt, dz/dt)). Systems that do not settle on a fixed point or a limit cycle and which are
therefore not periodic are called chaotic systems. The minimal dimension for chaotic systems
is three variables; essentially because in a cube you can draw a line (a ”strange” attractor),
which represents the flow of the dynamic system, that has infinite length and never intersects
with itself. Chaos is an intriguing dynamics but not very important for molecular systems
biology, sorry. ¨̂
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7.13 to zero and solve for y. We then obtain for the nullclines,

y = f−1(x) =
k−1 x− ak+

1

k3x2

y = g−1(x) =
bk2

k3x2
(7.16)

As a sanity check we can determine the intersection point, where the system is
at steady state,

k−1 xs − ak+
1

k3x2
s

=
bk2

k3x2
s

⇒

k−1 xs − ak+
1 = bk2 ⇒

xs =
bk2 + ak+

1

k−1
(7.17)

And indeed this agrees with our earlier findings.
In figure 7.5 we plot the dynamics of the system for a set of parameters that

gives rise to oscillations. The phase plane is also displayed with the nullclines
(red and blue) and the dynamics of figure A (in black). The gray lines with
arrows indicate the direction of the dynamics of the 2-variable system. These
arrow indicate around the steady state that it is unstable; as the arrow moves
away from it in an oscillatory motion towards the limit cycle. In other words,
a phase plane allows you to study the stability of steady states when in every
point in the plane the direction of flow in calculated, i.e. dx/dt and dy/dt are
determined in every point. This makes it a very useful method. However, it
does not immediately indicate the effect of parameter changes on qualitative
changes in dynamics (called bifurcations), e.g. the appearance or disappearance
of bistability and oscillations. To achieve this we to construct a bifurcation
diagram (like we did for in the previous section for bistability, i.e. the S-curve).

Figure 7.6 indicates that the kinetic parameters k+
1 is an interesting parame-

ter to study bifurcations. In figure 7.7 the bifurcation diagram for x as function
of the bifurcation parameter ak+

1 is displayed. It is customary to indicate the
amplitude of the oscillations in such a figure as well. At a value of ak+

1 around
0.18 the oscillations suddenly disappear. For ak+

1 values just below 0.18, the
oscillation were already occurring with low amplitude. After this value, the
steady states are stable and oscillations are absent. To be able to reproduce we
have to learn a trick to determine the stability of steady states of two variable
systems.

7.5 Stability of steady states of dynamic sys-
tems with two variables

At the beginning of this chapter the eigenvalue was introduced as stability mea-
sure. When it was positive the associated steady states was unstable and other-
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Figure 7.5: Explanation of phase plane analysis. We consider the dynamics
of the molecules X and Y that engage in the chemical reactions given in equation
7.12. We choose k+

1 a = 1
5
√

3
, k−1 = 1, k2 = 0.5 and k3 = 1 to obtain figures A

and B. In A the oscillatory dynamics of the concentrations of X and Y is shown
as function of time. In Figure B, the phase plane is shown. Three curves are
visible. In black the oscillatory dynamics of x and y as function of time is shown
in the (x, y)-plane. In red, the equation dx/dt = 0 is shown; in other words on
this line lie values of x and y that together make dx/dt = 0. The blue curve
achieves the same for dy/dt = 0.



136 CHAPTER 7. DYNAMICS OF MOLECULAR SYSTEMS

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

1.2

t

x@tD
an
d
y@tD

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

xHtL

yHtL

stable steady state
(all arrows point inwards)

flo
w

g(x,y)=0

f(x,y)=0

Figure 7.6: Disappearance of oscillations upon parameter change. A
change in kinetic parameter ak+

1 to 0.5 leads to disappearance of oscillatory be-
havior and the steady state become stable.The black line indicates the dynamics
(”flow”) of the system as shown in the upper figure.
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Figure 7.7: Bifurcation diagram. The kinetic parameter ak+
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the stability of the steady states were checked. Below a critical value of this
parameter oscillations were found and above this bifurcation point stable (non-
oscillating states were found). The thick-dashed lines indicate the amplitude of
the oscillations. A similar figure can be obtained for y as function of ak+

1 .

wise stable. For two variables we have to consider two eigenvalues. The number
of eigenvalues always equals the number of (independent) variables.

To explain the stability of the steady states of dynamic systems with two
variables we have to start a bit technical. We consider again the mass balances
of the molecules,

dx

dt
= f(x, y)

dy

dt
= g(x, y) (7.18)

The steady state is defined as the combination of concentrations (xs, ys) such
that,

0 = f(xs, ys)
0 = g(xs, ys) (7.19)

To assess the stability of this steady state we have to determine whether a small
change in the value of xs to xs + δx and/or ys to ys + δy will lead to dynamics
where the system returns to xs and ys such that the steady state is stable or
not in case of instability. Again we can write,

dxs
dt

+
dδx

dt
= f(xs, ys) +

∂f

∂x
δx+

∂f

∂y
δy

dys
dt

+
dδy

dt
= g(xs, ys) +

∂g

∂x
δx+

∂g

∂y
δy (7.20)
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All these derivatives are evaluated at x = xs and y = ys. This set of equations
can be simplified to,

dδx

dt
=

∂f

∂x
δx+

∂f

∂y
δy

dδy

dt
=

∂g

∂x
δx+

∂g

∂y
δy (7.21)

This set of equation is often written in terms of vectors and matrices,
(

dδx
dt
dδy
dt

)
=

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)

︸ ︷︷ ︸
Jacobian matrix

·
(
δx
δy

)
(7.22)

The matrix that contains the partial derivatives is termed the Jacobian matrix.
In order to assess stability we have to determine the eigenvalues of this equation.
The properties of this matrix are sufficient to assess stability of a steady state.
This means that for the steady state of interest the jacobian entries have been
evaluated.

Exercises

1. Draw the reaction network and determine the jacobian matrices of the
following dynamic systems:

(a)

dx

dt
= k+

1 s− k−1 x− k+
2 x+ k−2 y

dy

dt
= k+

2 x− k−2 y − k+
3 y − k−3 p

(b)

dx

dt
= k1y − k2 · x · y

dy

dt
= k3 − k4y − k2 · x · y

(c) The Schnakenberg model (considered in the main text):

dx

dt
= k+

1 a− k−1 x+ k3x
2y

dy

dt
= k2b− k3x

2y (7.23)

(d) The Brusselator:

dx

dt
= k1a+ k2x

2 · y − k3b · x− k4x

dy

dt
= k3b · x− k2x

2y (7.24)
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(e) Determine the steady state of the Brusselator model in terms of ki-
netic parameters.

7.5.1 Analysis of the 2x2 jacobian matrix

Two properties of the jacobian matrix are very insightful when evaluating the
stability properties of the steady state of a 2-variable dynamic system,

trace : T =
∂f

∂x
+
∂g

∂y

determinant : D =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
(7.25)

The eigenvalues associated with a particular steady state can be expressed in
terms of the trace and the determinant of the jacobian matrix (how to do this
can be found in standard linear algebra books),

λ1 =
1
2

(T +
√

(T 2 − 4D))

λ2 =
1
2

(T −
√

(T 2 − 4D)) (7.26)

The line D = 1
4T

2 (derives from T 2 − 4D = 0) in the (T,D)-plane divides this
plane into six regions (figure 7.8). Those regions define all the qualitatively
different dynamics of the system around the steady state. Therefore, from these
regions the stability of the steady state can be assessed and the kind of instability
can be identified. This means that you can now classify all the types of steady
state a two variable dynamic system can have. On the basis of the values of D
and T determined from the jacobian matrix of a dynamic system; this jacobian
matrix should be calculated at the steady state of interest.

Let’s use the information in figure 7.8 by working out an example3. The
example is given by,

dx

dt
= x(x(1− x)− y) = f(x, y)

dy

dt
= k(x− 1/µ)y = g(x, y) (7.27)

This example is a bit artificial but will nonetheless indicate a number of useful
points. First, we determine the nullclines. The nullcline given dx/dt = 0 cor-
responds to y = x(1 − x) and the line x = 0. The nullcline corresponding to
dy/dt = 0 equals the lines x = 1/µ and y = 0. Solving dx/dt = 0 and dy/dt = 0
for x and y leads to three steady states: (0, 0), (µ−1, µ−1(1− µ−1)), and (1, 0).
See figure 7.9.

Next, we will determine the stability properties of these steady states and
whether they correspond to centers, spirals, or nodes. To achieve this we need
to determine the jacobian matrix,

3Here we follow the appendix in Mathematical models in molecular and cellular biology
edited by L.A. Segel.
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1
4
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Figure 7.8: Classification steady states and their stability. The line
D = 1/4T 2 and the regular axes divide the figure into six regions. Each of these
regions corresponds to a particular steady state class, which differ in stability
and the nature of the dynamics around the steady state point. The steady state
point always lie exactly in the middle of the the inset plots, which display the
qualitative dynamics. Clearly stability occurs when D > 0 and T < 0: two
types of stable steady state are possible a stable node (or fixed point) and a
stable spiral (damped oscillations). When the determinant changes sign from
stable node to a saddle point, a saddle-node bifurcation occurs. This kind of
bifurcation is associate with bistability. An unstable spiral is associated with
oscillations.
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blue and red lines correspond to the null cline that results from dy/dt = 0 and
dx/dt = 0. Three intersections are found between the nullclines so three steady
states occur. The arrows already hint at the nature of those steady states, a
node, a centre and a saddle point. This is confirmed in the main text with a
calculations of the determinant and the trace to be able categorize the steady
states on the basis of figure 7.8.

M =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
=
(

2x− 3x2 − y −x
ky k(x− µ−1)

)
(7.28)

We choose k = 1 and µ = 1.8. Evaluation of the jacobian matrix at the three
steady states gives:

(0, 0) ⇒ M =
(

0 0
0 −0.56

)
⇒ D = 0, T = −0.56

(0.56, 0.25) ⇒ M =
(
−0.062 −0.56

0.25 0

)
⇒ D = 0.13, T = −0.062

(1, 0) ⇒ M =
(
−1 −10
0 0.44

)
⇒ D = −0.44, T = −0.56 (7.29)

Inspection of figure 7.8 then shows that the steady state (0, 0) is lies on the
D = left from the origin (T < 0) and the state lies in between a stable node
and a saddle point. For the second steady state at (0.56, 0.25), D > 1/4T 2, the
determinant is positive and the trace is negative, so this state is a stable spiral.
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7.5.2 Exercises

1. Confirm the calculations done in the previous paragraph, determine your-
self:

(a) The nullclines

(b) The steady states

(c) The jacobian matrix

(d) Determine the determinant and the trace of the jacobian matrix at
the three steady states

(e) Assess the type of steady state

(f) Determine the eigenvalues of the steady state. When the real part
of the eigenvalue (the number without the i in front, which indicates
the imaginary part) is negative the steady state is stable.

2.
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